PRAVIDLA PROVOZOVÁNÍ
LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY

PŘÍLOHA 4

PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PROVOZOVATELE LDS

Zpracovatel:

Provozovatel lokální distribuční soustavy
UNIPETROL RPA, s.r.o. Litvínov
Červenec 2012

Schválil:

ENERGETICKÝ REGULAČNÍ ÚŘAD
Dne: 5.11.2012
Obsah

PŘEDMLUVA ... 4

1 OZNAČENÍ A POJMY .. 5

2 ROZSAH PLATNOSTI ... 8

3 VŠEOBECNÉ ... 9

4 PŘIHLAŠOVACÍ ŘÍZENÍ ... 10
 4.1 TECHNICKÉ KONZULTACE .. 10
 4.2 ŽÁDOST O PŘIPOJENÍ ... 10
 4.3 POSOUZENÍ ŽÁDOSTI O PŘIPOJENÍ VÝROBNÝ ... 10
 4.3.1 PLDS VYŽADUJE STUDII PŘIPOJITELNOSTI .. 11
 4.3.2 NÁVRH SMLOUVY .. 11
 4.4 STUDIE PŘIPOJITELNOSTI VÝROBNÝ .. 11
 4.4.1 ROZSAH STUDIE .. 12
 4.5 PROJEKTOVÁ DOKUMENTACE .. 12
 4.6 ZMĚNY ŽÁDOSTI O PŘIPOJENÍ ... 13
 4.6.1 ZMĚNY, KTERÉ LZE PROVĚST V RÁMCI EVIDOVANÉ ŽÁDOSTI O PŘIPOJENÍ DLE BODU Č. 4.2 .. 13
 4.6.2 ZMĚNY, KTERÉ NELZE PROVĚST V RÁMCI EVIDOVANÉ ŽÁDOSTI O PŘIPOJENÍ DLE BODU Č. 4.2 .. 13

5 PŘIPOJENÍ K SÍTI ... 14
 5.1 DÁLKOVÉ ŘÍZENÍ ... 15

6 ELEKTROMĚRY, MĚŘICÍ A ŘÍDICÍ ZAŘÍZENÍ .. 17

7 SPÍNACÍ ZAŘÍZENÍ ... 18

8 OCHRANY .. 19
 8.1 NESELEKTIVNĚ VYPÍNANÉ VÝROBNÍ JEDNOTKY ... 19
 8.2 SELEKTIVNĚ VYPÍNANÉ VÝROBNÍ JEDNOTKY ... 20

9 CHOVÁNÍ VÝROBEN V SÍTI .. 22
 9.1 ZÁSADY PODPORY SÍTĚ .. 22
 9.1.1 STATICKÉ ŘÍZENÍ NAPĚTÍ ... 22
 9.1.2 DYNAMICKÁ PODPORA SÍTĚ .. 22
 9.2 PŘIZPŮSOBENÍ ČINNÉHO VÝKONU .. 22
 9.2.1 SNIŽENÍ ČINNÉHO VÝKONU V ZÁVISLOSTI NA KMITOČTU SÍTĚ 22
 9.2.2 ŘÍZENÍ ČINNÉHO VÝKONU V ZÁVISLOSTI NA PROVOZNÍCH PODMÍNKÁCH 23
 9.3 ŘÍZENÍ JALOVÉHO VÝKONU V ZÁVISLOSTI NA PROVOZNÍCH PODMÍNKÁCH 23
 9.3.1 ZDRAJE PŘIPOJOVANÉ DO SÍTÍ NN .. 23

10 PODMÍNKY PRO PŘIPOJENÍ .. 26
 10.1 ZVÝŠENÍ NAPĚTÍ .. 26
 10.2 ZMĚNY NAPĚTÍ PŘI SPÍNÁNÍ ... 27
 10.3 PŘIPOJOVÁNÍ SYNCHRONNÍCH GENERÁTORŮ ... 28
PŘÍLOHA 4 PPLDS: PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PLDS

10.4 PŘIPOJOVÁNÍ ASYNCHRONNÍCH GENERÁTORŮ ... 29
10.5 ZVLÁŠTNÍ POŽADAVKY NA VÝROBNY S OBNOVITELNÝMI ZDROJI
S VÝKONEM NAD 15 MW PŘIPOJOVANÉ DO SÍTÍ 110 KV ... 29
 10.5.1 URČENÍ JEMOVITÉHO VÝKONU .. 29
 10.5.2 DODÁVKA ČINNÉHO VÝKONU .. 29
 10.5.3 DODÁVKA JALOVÉHO VÝKONU ... 30
 10.5.4 CHOVÁNÍ PŘI PORUCHÁCH V SÍTI ... 30
10.6 VÝJIMKY PRO VÝROBNY S OBNOVITELNÝMI ZDROJI .. 32

11 ZPĚTNÉ VLIVY NA NAPÁJECÍ SÍŤ ... 34
 11.1 ZMĚNA NAPÉTÍ .. 34
 11.2 PROUDY HARMONICKÝCH ... 35
 11.2.1 VÝROBNY V SÍTI NN ... 35
 11.2.2 VÝROBNY V SÍTI VN ... 36
 11.2.3 VÝROBNY V SÍTI 110 KV ... 37
 11.3 OVLIVNĚNÍ ZAŘÍZENÍ HDO ... 38

12 UVEDENÍ VÝROBNY DO PROVOZU A PROVOZOVÁNÍ ... 41
 12.1 PRVNÍ PARALELNÍ PŘIPOJENÍ VÝROBNY K SÍTI ... 41
 12.2 ZKUŠEBNÍ PROVOZ ... 42
 12.3 TRVALÝ PROVOZ VÝROBNY, UZAVŘENÍ PŘÍSLUŠNÝCH SMLUV 42

13 PŘÍKLADY PŘIPOJENÍ VÝROBEN ... 44

14 DODATEK .. 54

15 LITERATURA ... 61

16 PŘÍKLADY VÝPOČTU ... 62

17 FORMULÁŘ .. 64
 17.1 DOTAZNÍK PRO VLASTNÍ VÝROBNU ... 64
 17.2 PROTOKOL O UVEDENÍ VLASTNÍ VÝROBNY DO PROVOZU 67
 17.3 PŘÍLOHA PROTOKOLU O UVEDENÍ VÝROBNY DO PROVOZU 69
PŘEDMLUVA

Následující pravidla shrnují hlavní hlediska, na která je zapotřebí brát zřetel při připojování výrobny elektřiny do sítě nn, vn nebo 110 kV provozovatele lokální distribuční soustavy (PLDS). Slouží proto stejně pro provozovatele distribučních soustav i pro výrobce elektřiny a provozovatele lokálních distribučních soustav s vnořenými zdroji jako podklad při projektování a pomůcka při rozhodování.

V jejich rámci je možné se zabývat pouze všeobecně běžnými koncepcemi zařízení, vycházejícími ze současných zvyklostí, dostupných zařízení i současně platných předpisů.

V části "Označení a pojmy" jsou krátce vysvětleny nejdůležitější pojmy.

K jednotlivým bodům pravidel jsou poskytnuty další informace pro vysvětlení jejich určitých požadavků, popř. záměrů. Pro omezení vlastního textu pravidel na to nejpodstatnější jsou tato vysvětlení shrnuta v dodatku po jednotlivých částech.

Dále se nachází v dodatku stručný seznam literatury, příklad výpočtu a formuláře "Základní údaje" a "Protokol o uvedení do provozu".
1 OZNAČENÍ A POJMY

* S_{kV} zkratový výkon ve společném napájecím bodu (pro přesný výpočet S_{kV} viz [7])
* ψ_{kV} fázový úhel zkratové impedance
* U_n jmenovitý napětí sítě
* P_{ln}, A_{lh} dlouhodobá míra vjemu flikru, činitel dlouhodobého rušení flikrem [7], [9]:
 - míra vjemu flikru P_{ln} v časovém intervalu dlouhém (lt = long time) 2 h
 - A_{lh} je činitel rušení flikrem A_{lh}, mezi kterými platí vztah $A_{lh} = P_{lh}^3$.
* ΔU změna napětí
 - Rozdíl mezi efektivní hodnotou na začátku napájecího zdroje a následujícími efektivními hodnotami.
 - Požn.: Pro relativní změnu ΔU se vztahuje změna napětí sdruženého napětí ΔU k napájecímu napětí U_n: $\Delta U = \Delta U/U_n$. Pokud má změna napětí ΔU význam úbytku fázového napětí, pak pro relativní změnu napětí platí $\Delta u = \Delta U/U_n/\sqrt{3}$.
* c činitel flikru zařízení
 - Bezrozumelná veličina, specifická pro dané zařízení, která spolu s dvěma charakteristickými veličinami, tj. výkonem zařízení a zkratovým výkonem ve společném napájecím bodu, určuje velikost flikru vyvolaného zařízením ve společném napájecím bodu.¹
* S_A jmenovitý zdánlivý výkon výrobní jednotky
* S_{Amax} jmenovitý maximální zdánlivý výkon výrobny
* S_{nE} jmenovitý zdánlivý výkon generátoru
* $\cos \phi$ cosinus fázového úhlu mezi základní harmonickou frekvencí a proudem
* λ účinnik – podíl činného výkonu P a zdánlivého výkonu S
* k poměr mezi rozběhovým, popř. zapínacím proudem a jmenovitým proudem generátoru
* I_a rozběhový proud
* I_p proud, na které je zdroj dimenzován (obvykle jmenovitý proud I_n)
* k_{kz} zkratový poměr, poměr mezi S_{kV} a maximálním zdánlivým výkonem výrobny S_{Amax}

Flikr

Subjektivní vjem změny světelného toku.

Harmonické

Sinusové kmity, jejichž kmitočet je celistvým násobkem základní frekvence (50 Hz).

¹ Norma [7] rozlišuje mezi činitelem flikru pro ustálený provoz (u větrných elektráren), který závisí na vnitřním úhlu zkratové impedance sítě a činitelem flikru pro spínání připojování a odpojování. Protože dosud nejsou tyto činitele od všech typů dispozicí, nejsou v této verzi Přílohy 4 PPLDS odvozené požadavky v části 10 a 11 uplatněny.
Meziharmonické

Sinusové kmity, jejichž kmotičet není celistvým násobkem základní frekvence (50 Hz).

Poznámka: Meziharmonické se mohou vyskytovat i ve frekvenčním rozsahu mezi 0 a 50 Hz.

OZ

Zapnutí obvodu vypíná spojeného s části sítě, v níž je porucha, automatickým zařízením po časovém intervalu, umožňujícím, aby z této části sítě vymizela přechodná porucha.

PDS

Fyzická či právnická osoba, která je držitelem licence na distribuici elektřiny; na části vymezeného území provozovatele velké regionální DS mohou působit provozovatelé lokálních DS (PLDS) s vlastním vymezeným územím a napěťovou úrovní.

PLDS

Fyzická či právnická osoba, která je držitelem licence na distribuici elektřiny, působí na části vymezeného území provozovatele velké regionální DS a má vlastní vymezené území a vlastní napěťovou úroveň.

Předávací místo

Místo styku mezi LDS a zařízením uživatele LDS, kde elektřina do LDS vstupuje nebo z ní vystupuje.

Připojový výkon zdroje

Součet štítkových (typových) hodnot instalovaných výkonů zdrojů připojovaných do odběrného místa nebo předávacího místa.

Společný napájecí bod

Nejbližší místo ve vlastní sítě, do kterého je vyveden výkon vlastního zdroje, ke kterému jsou připojeni, nebo ke kterému mohou být připojeni další odběratelé.

Střídače řízené vlastní frekvencí

Samostatné střídače nepotřebují pro komutaci žádné cizí napětí, pro paralelní provoz se sítí ale potřebují odvodit řízení zapalovacích impulsů od frekvence sítě. Jsou schopné ostrovního provozu, pokud mají vnitřní referenční frekvenci (např. krystal) a přídavnou regulaci pro trvalý ostrovní provoz, na který se při výpadku sítě přechází buď automaticky, nebo ručním přepnutím.

Střídače řízené síti

Střídače řízené síti potřebují ke komutaci cizí napětí, které nepatří ke zdroji střídače. Tyto střídače nejsou ve smyslu této směrnice schopné ostrovního provozu.

Výroba

Pro účely této přílohy se výrobnou rozumí část zařízení zákazníka, ve které se nachází jeden nebo více generátorů k výrobě elektřiny, včetně všech zařízení potřebných pro její provoz. Vztahy, které se vztahují k výrobně, obsahují index “A”.

Výrobní jednotka

Část výroby, zahrnující jeden generátor včetně všech zařízení, potřebných pro jeho provoz. Hranicí výrobní jednotky je místo, ve kterém je spojena s dalšími jednotkami nebo s distribuční sítí.

Vztahy týkající se jedné výrobní jednotky obsahují index “E”.

Generátor

Část výrobní jednotky, ale bez event. kondenzátorů ke kompenzaci účiníku. Ke generátoru nepatří ani transformátor, přizpůsobující napětí generátoru napětí veřejné sítě. Vztahy týkající se jednoho generátoru obsahují index “G”.
Kompenzační zařízení
zařízení pro kompenzací účiníku nebo řízení jalové energie

Ostrovní provoz části LDS
Provoz zdroje/ů s vyčleněnou částí LDS, která je odpojena od DS.

Ostrovní provoz předávacího místa se zdrojem
Provoz zdroje pokrývá spotřebu předávacího místa při paralelním provozu se sící. Ostrovní provoz vznikne odepnutím předacího místa od LDS

Oddělený ostrovní provoz
Zdroj provozovaný odděleně od LDS, paralelní provoz s LDS není dovolen (i náhradní zdroje)
2 ROZSAH PLATNOSTI

Tato pravidla platí pro plánování, zřizování, provoz a úpravy výroben elektřiny, připojených k síti nn, vn nebo 110 kV PLDS.

Takovýmito výrobními jsou např.:
- vodní elektrárny
- generátory poháněné tepelnými stroji, např. blokové teplárny, kogenerační jednotky, spalování bioplynu a biomasy
- geotermální

Minimální výkon, od kterého je nutné připojení k síti vn nebo 110 kV a maximální výkon, do kterého je možné připojení do sítě nn, resp. vn závisí na druhu a způsobu provozu vlastní výroby, stejně jako na síťových poměrech PLDS.
3 VŠEOBECNÉ

Při zřizování vlastní výroby je zapotřebí dbát na platná nařízení a předpisy, na to, aby byla vhodná pro paralelní provoz se sítí PLDS a aby bylo vyloučeno rušivé zpětné působení na síť nebo zařízení dalších odběratelů.

Při zřizování a provozu elektrických zařízení je zapotřebí dodržovat:
- současně platné zákonné a úřední předpisy, především [1], [2] a [3]
- platné normy ČSN, PNE, případně PN PLDS
- předpisy pro ochranu pracovníků a bezpečnost práce
- nařízení a směrnice PLDS.

Projektování, výstavbu a připojení vlastní výroby k síti PLDS je zapotřebí zadat odborné firmě.

Připojení k síti je třeba projednat a odsouhlasit s PLDS.

PLDS může ve smyslu zákona [1] požadovat změny a doplnění na zřizovaném nebo provozovaném zařízení, pokud je to nutné z důvodů bezpečného a bezporuchového napájení, popř. též z hlediska zpětného ovlivnění distribuční soustavy. Konzultace s příslušným útvarem PLDS by proto měly být prováděny již ve stadiu přípravy, nejpozději při projektování vlastní výroby.
4 PŘIHLAŠOVACÍ ŘÍZENÍ

Pro přihlášení je zapotřebí předat PLDS včas žádost o připojení dle [2] a dále:
- katastrální mapa s vyzařením pozemku nebo výrobn, výpis z katastru nemovitostí
- údaje o zkratové odolnosti předávací stanice
- popis ochran s přesnými údaji o druhu, výrobci, zapojení a funkci
- příspěvek vlastní výrobně k počátečnímu zkratovému proudu v místě připojení k síti
- u střídačů, měničů frekvence a synchronních generátorů s buzením napájeným usměrňovači: zkušební protokoly k očekávaným harmonických a meziharmonických, impedance pro frekvence HDO (183 až 283 Hz)

Především je zapotřebí přiložit dotazník s technickými údaji o zařízení, jehož vzor je přiložen v bodě 17.1 této přílohy.

4.1 TECHNICKÉ KONZULTACE

Na základě obecného požadavku poskytne PLDS žadateli informace o možnostech a podmínkách připojení výrobny k LDS a o podkladech, které musí žádost o připojení výrobně k LDS obsahovat (viz. 4.2.). Poskytnuté informace o možnosti připojení výrobně jsou pouze orientační, nejsou závazné a písemné vyjádření není možné použít pro účely územního a stavebního řízení. Vyjádření nemá vymezenou časovou platnost.

4.2 ŽÁDOST O PŘIPOJENÍ

Základní náležitosti žádosti o připojení zařízení k LDS jsou uvedeny v Příloze č.1 vyhlášky [2] a v PPLDS č. 3.7.3. Především je zapotřebí přiložit vyplněný formulář PLDS, jehož vzor je přiložen v části 15.5.

Součástí podkladů dále jsou:
- souhlas vlastníků nemovitostí dotčených výstavbou výrobně
- územně-plánovací informace dle [2]
- požadovaná hodnota rezervovaného výkonu a rezervovaného příkonu
- stávající hodnota rezervovaného příkonu a výkonu
- v případě, že žádost neobsahuje všechny uvedené náležitosti, nebude ze strany PLDS posuzována a žadatel bude neprodleně vyžádán k doplnění žádosti.

Za termín přijetí žádosti se považuje datum doručení úplné žádosti o připojení včetně uvedených náležitostí žádosti o připojení výrobně.

4.3 POSOUZENÍ ŽÁDOSTI O PŘIPOJENÍ VÝROBNY

PLDS po obdržení žádosti rozhodne ve lhůtě dle [2] dle charakteru výrobně a navrhovaného místa připojení:

a) zda je připojení možné s ohledem na:

1 rezervovaný výkon předávacího místa mezi DS/LDS a hodnotu limitu připojitelného výkonu odběrného místa PLDS stanovených provozovatelem DS ve smlouvě o připojení mezi PDS a PLDS.

2 volnou distribuční kapacitu na úrovni transformace 110 kV/vn

Základem pro stanovení mezního (tzn. maximálního) připojitelného výkonu v dané oblasti je vzorec

\[P_{MEZ} = (\sum P_{i(N-1)} * k_{FR} + P_{BILANCE}) * k_E \]

kde jednotlivé části mají následující význam:

\[\sum P_{i(N-1)} \] je součet instalovaných výkonů transformátorů 110 kV/vn v řešené oblasti s vyloučením stroje o největším výkonu (kriterium N-1)
V případě transformování s jedním transformátorem uvažujte 50% Při transformátorem, není-li stanoveno PLDS jinak (např. základ výpočtu chodu sítě)

\[
k_{TR} \text{ redukční koeficient zohledňující optimální zatížení transformátoru}. \\
P_{\text{BALANCE}} \text{ výkonová bilance oblastí}.
\]

\[
k_k \text{ redukční koeficient zohledňující drobnou rozptylenou výrobu}. \]

Umožňuje vytvoření výkonové rezervy pro zdroje, jejichž připojení do oblasti bude povolováno i v době, kdy oblast bude bez volné přenosové kapacity

Volná distribuční kapacita v transformační vazbě DS/LDS se pak určí ze vztahu

\[
P_{\text{VOLNÁ KAPACITA}} = P_{\text{MEZ}} - P_{\text{AKTIVNÍ}}
\]

kde \(P_{\text{AKTIVNÍ}} \) je součet instalovaných výkonů zdrojů, které již byly v dané oblasti PLDS odsouhlaseny, ale dosud nebyly uvedeny do provozu, nebo byly uvedeny do provozu po termínu letního měření využitého pro výpočet \(P_{\text{BALANCE}} \).

\[b)\] zda je nutné, aby žadatel nechal možnost připojení výrobní k LDS ověřit studií připojitevnosti.

\[c)\] další posouzení žádosti o připojení musí zohlednit požadavky dané touto přílohou

4.3.1 PLDS VYŽADUJE STUDII PŘIPOJITELNOSTI

Požadavky na studii připojitevnosti jsou uvedeny v [2].

4.3.2 NÁVRH SMLOUVY

Po předložení studie s kladným výsledkem je žadatel v termínech dle vyhlášky [2] zaslán návrh smlouvy dle bodu č. 4.3.2.

V případě, že není předloženo studie připojitevnosti výroby vyžádáno, nebo již byla žadatelem studie se souhlasnými výsledky dle bodu č. 4.3.1 předložena a ze strany PLDS odsouhlasena, je žadatel vystaven návrh smlouvy o připojení nebo návrh smlouvy o budoucí smlouvě. V návrhu smlouvy je stanoven termín na jeho přijetí a další podmínky dle vyhlášky [2]. Přílohou smlouvy jsou stanovené technické podmínky pro připojení výrobní k LDS. Smlouvu lze prodloužit pouze na základě splnění podmínek vyhlášky [2].

U výroben připojených do síť m s instalovaným výkonem do 30 kW se zpracování studie zpravidla nevyžaduje, v těchto případech provádí posouzení pouze PLDS a to dle podmínek této přílohy.

4.4 STUDIE PŘIPOJITEVNOSTI VÝROBNY

Studie připojitevnosti výrobní (dále jen studie) musí obsahovat technické posouzení možného připojení výrobní s ohledem na:

- napěťové poměry ve všech posuzovaných uzlech sítě
- zatížitelnost jednotlivých prvků sítě
- dodržení parametrů zpětných vlivů na LDS dle kritérií v části 10 a 11, tj. – zejména změny napětí vyvolané trvalým provozem výroby, změny napětí při spínání, útlumu signálu HDO, flikru, harmonických a dalších kritérií daných PPLDS (dle charakteru výrobně).

Náklady na zpracování studie hradí jejímu zpracovateli žadatel.

Podklady pro tvorbu studie připojitevnosti zpravidla obsahují:

\[2\] Pokud není zdůvodněna jiná hodnota, volí se \(k_{TR}=0,9 \)

\[3\] Je to hodnota naměřená během letního měření obvykle 5,7, ve 13:00 hodin (tato hodnota v sobě obsahuje odběr v oblasti snížený o velikost výroby na všech zdrojích připojených v oblasti – klasických i OZE). PLDS je oprávněn uvedenou naměřenou hodnotu korigovat o hodnoty výkonů zdrojů, které v době měření byly mimo provoz.

\[4\] Pokud není zdůvodněna jiná hodnota, volí se \(k_k = 0,9, k_l = 1 \) – použije se tehdy, vychází-li výpočet z úplné evidence všech zdrojů. V tomto případě se nevytváří žádná rezerva pro připojování rozptylené výroby, a tudíž do uzavřené oblasti nelze připojit již žádný zdroj.
Příloha 4 PPLDS: PRAVÍDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PLDS

a) zkratový výkon výv nebo vn v napájecí rozvodně nebo místě od kterého bude vliv počítán
b) stávající a výhledové hodnoty zatížení v soustavě
c) související zdroje připojené k LDS v předmětné části LDS
d) platné požadavky na připojení zdrojů k LDS v předmětné části LDS
e) parametry transformátoru vvn/vn,
f) stávající a výhledový stav HDO
g) parametry vedení k místu připojení – délka, typ, průřez,
h) možné provozní stavy (základní zapojení + zapojení při náhradních dodávkách)
i) zjednodušený mapový podklad.

Posuzování připojitele nezůstane v případě studií, jeho provádění postupy uvedenými v části 10 a 11 s
ohlédem na dosažení co nejmenšího zpětného ovlivnění LDS provodem výrobny a využívat při tom všech provozních
možností připojovaného zařízení (např. připojení provního účinku s ohledem na co nejmenší změnu napětí vyvolanou
provozem výrobny). Ve studii je nutné vycházet z požadavků na připojení zdrojů i zástupu zdrojů a výhledové hodnoty zatížení v
soustavě 11 je zapotřebí ve výpočtu podle provozního diagramu PQ.

V případě pochybností o správnosti a úplnosti předložené studie může PLDS požadovat její doplnění,
rozšíření a jako neodpovídající (viz [2]).

Provozovatel LDS má právo si vyžádat kopie dokumentů z kterých zpracovatel studie čerpá při výpočtu: jedná
se především o zkušební protokoly, atesty zkušeben, použité výpočetní metody apod. V případě, že zpracovatel
studie není schopen doložit dokumenty, z kterých čerpal technické údaje a postupy při výpočtech, má PLDS právo
považovat studii za nehodnověrnou a nesmí ji akceptovat.

4.4.1 ROZSAH STUDIE

U zdrojů, připojovaných do síti na a vn je rozsah dán zpravidla stanicí s napájecím transformátorom sítě,
veděním s posuzovaným zdrojem a jeho doporučeným přípojným bodem a dalšími vedeními s posuzovanými či
plánovanými zdroji i zátěžemi těchto vedení. Posuzovány jsou provozní stavy definované PLDS. Dále se ve studí
posuzují případně příjmy do vrchních napěťových hladin a jejich vliv na činnost regulace napětí transformátorů,

Výpočty chodu sítě jsou dle požadavku provozovatele LDS prováděny pro letní minimální zatížení, zimní
maximální zatížení, příp. takové zatížení, při němž bude dosahováno maxima výroby v dané sítě. Protože v současné
době nejsou k dispozici pro pokračování chování zdrojů v přechodových stavech podle části 11 požadované výpočtů údaje,
bude zpracovatel studie dokládat pouze schopnost (vybavenost) těchto zdrojů pro tyto výpočty, město efektivních
nakladech výrobce.

4.5 PROJEKTOVÁ DOKUMENTACE

Požadovaná prováděcí projektová dokumentace dle vyhlášky 499/2006, předložená PLDS k odsouhlasení
musí obsahovat minimálně tyto základní podklady:
- realizaci požadavků PLDS dle vyjádření (bod č.4.3.2.)
- délky, typy a průřezy vedení mezí výrobnou a místem připojení k LDS, parametry použitých transformátorů
- situací řešení připojení výrobky k LDS
- typy, parametry a navržené hodnoty nastavení elektrických ochran výrobky souvisejících s LDS
- parametry a provedení řízení činného a jalového výkonu (pokud je požadováno podle části 9)
- parametry a provedení zařízení pro snížení útlumu signálu HDO, pokud vypočtené nebo naměřené hodnoty
přesahují limity povolené PPLDS nebo technickými normami.
- návrh provedení fakturačního měření a jeho umístění.
4.6 ZMĚNY ŽÁDOSTI O PŘIPOJENÍ

4.6.1 Změny, které lze provést v rámci evidované žádosti o připojení dle bodu č. 4.2.
- snížení celkového instalovaného výkonu výrobního bloku
- změna typu a počtu výrobních jednotek do výše původně požadovaného celkového instalovaného výkonu
- změna umístění výrobního bloku s podmínkou zachování stanoveného místa a způsobu připojení k LDS

V případě požadavku na tyto změny je nutné podat novou žádost o připojení do PLDS.

4.6.2 Změny, které nelze provést v rámci evidované žádosti o připojení dle bodu č. 4.2.
- zvýšení celkového instalovaného výkonu výrobního bloku
- změna místa a způsobu připojení výrobního bloku k LDS

V případě požadavku na tyto změny je nutné podat novou žádost o připojení.
5 PŘIPOJENÍ K SÍTI

Nově připojované zdroje do LDS musí být připraveny pro instalaci dálkového ovládání, tzn. ovládací obvod a komunikační cestu mezi elektroměrovým rozváděčem a novým zdrojem.

Připojení k síti PLDS se děje ve předávacím místě s oddělovací funkcí, přístupném kdykoliv personálu PLDS.

Požadavek na kdykoliv přístupné spínácí místo s oddělovací funkcí je u jednofázových zdrojů do 4,6 kVA a trojfázových do 30 kVA splněn, pokud jsou tyto zdroje vybaveny zařízením pro sledování stavu sítě s příručeným spínacím prvkem. Spínací prvek může být samostatný. Princip může být sledování impedance a vyhodnocování její změny, fázové sledování napětí či změna fázorů napětí. Napětí je sledováno v těch fázích, ve kterých je výroba připojena k síti. Toto se týká zdroje neumožňujícího ostrovní provoz OM. V případě, že zdroj umožňuje ostrovní provoz OM, musí být zajištěno, že v případě ztráty napětí v distribuční sítě dojde k odpojení celého OM. Toto zařízení musí být ověřeno akreditovanou zkušebnou.

U zdrojů s instalovaným výkonem 100 kVA a více musí být spíná s oddělovací funkcí vybaven dálkovým ovládáním a signalizací stavu.

Příklady připojení jsou uvedeny v části 13 této přílohy. Pro zdroje s nízkou dobou využití, na jejichž provoz není vázána výrobě technologie a výrobcenepožaduje obvyklou zabezpečnost připojení k soustavě (např. pro větroné elektrárny), lze připustit uvedená zjednodušená připojení k soustavě, pokud splňují ostatní požadavky na bezpečný provoz soustavy (např. selektivita ochran a u venkovních vedení provoz s OZ).

- výrobcen licencí, který chce uplatňovat cenové zvýhodnění výroby pro část spotřebovanou (očištěnou o vlastní spotřebu zdroje) a část dodanou do LDS musí zajistí připojení např. pro sítě, podle části 13, obr. 1a, obě měření musí být průběžná
- výrobcen licencí, který chce uplatnit celou výrobu jako dodanou do LDS musí zajistit připojení např. pro sítě, podle části 13, obr. 1b.

Vlastní výroby, popř. zařízení odběratelů s vlastními výrobními, které mají být provozovány paralelně se sítí PLDS, je zapotřebí připojit k síti ve vhodném předávacím místě.

Způsob a místo připojení na síť, stejně jako napěťovou hladinu, konečnou výši rezervovaného výkonu stanoví PLDS s přihlášením k daným síťovým poměrům, požadovanému výkonu a způsobu provozu vlastní výroby, stejně jako k oprávněným zájmu výrobců. Tím má být zajištěno, že vlastní výroba bude provozována bez rušivých účinků, neohrozi napájení dalších odběratelů nebo dodávky ostatních výroběců.

Posouzení možností připojení z hlediska zpětných vlivů na síť vychází z impedance sítě ve společném napájecím bodě (zkratového výkonu), připojoaného výkonu, stejně jako druhu a způsobu provozu vlastní výroby a údajích o souvisejících výrobách, včetně jejich vlivu na napětí v LDS, s využitím skutečně naměřených hodnot v související oblastí LDS.

Výrobu lze připojit:
- přímo k LDS
- v odběrném místě
- v předávacím místě jiné výrobný

V případě b) a c) žádá o připojení ten, který je již v daném místě připojen a PLDS postupuje podle části 4 této přílohy.
5.1 DÁLKOVÉ ŘÍZENÍ

Pro bezpečný provoz je nutné:

Výrobny s instalovaným výkonem do 100 kVA vybavit odpínacím prvkem umožňujícím dálkové odpojení zdroje z paralelního provozu s LDS. Tento prvek musí být instalován tak, aby zůstal funkční i po silovém odpojení výrobního přístroje se síťou PLDS a umožnil automatizaci tohoto procesu.

Výrobny s výkonem od 100 kW začlenit do systému dálkového řízení PLDS. Jde především o:

- Řízení spínače s oddělovací funkcí (především vypnutí při kritických stavech v síti – „dálkově VYP“/ZAP)
- Omezení dodávaného činného výkonu
- Řízení jalového výkonu
- Rozhraní pro přenos dat

Potřebné informace pro řízení provozu PLDS je zapotřebí předat ke zpracování buď řídícímu systému stanice (při připojení zdroje do přípojnice PLDS) nebo po připojení komunikačního protokolu do příslušného technického dispečinku PLDS.

Zdroje připojené do síti 110kV

Potřebná data a informace pro zpracování řídicího systému PLDS zpravidla jsou:

- Řízení,
 - Vypínací (odpínací)
 - Vývodový odpojovač
 - Zemní nož vývodového odpojovače

- Stavy výše uvedených zařízení

- Zadávané hodnoty
 - Zadany napětí, účinníky, jalový výkon
 - Omezení činného výkonu

- Přenosy měření
 - Činný třídízový výkon
 - Jalový třídízový výkon
 - Proud jedné fáze
 - fázová a sdružená napětí (podle systému)

- Signály ochran a výstrahy

Procesní rozhraní

Provedení rozhraní je zapotřebí dohodnout v každém jednotlivém případě s PLDS.

Pojmy pro všechny zdroje:

Disponibilní výkon

Jalový výkon

Rozhraní může být provedeno tak, aby byly současně pokryty oba rozsahy jalového výkonu. Výrobní výkon musí reagovat pouze ve smluvně dohodnutých rozsazích. Hodnota zadaná PLDS bude potvrzena řídícím systémem výrobního.

Činný výkon
Ke snížení činného výkonu je předán řídícímu systému výrobní regulační povel, který udává maximální činnou dodávku výrobních jednotek v procentech smluvně dohodnutého výkonu. Hodnota zadaná PLDS bude řídícím systémem výroby potvrzena.
6 ELEKTROMĚRY, MĚŘICÍ A ŘÍDICÍ ZAŘÍZENÍ

Druh a počet potřebných měřicích zařízení (elektroměrů PLDS) a řídicích přístrojů (přepínačů tarifů) se řídí podle smluvních podmínek pro odběr a dodávku elektriny PLDS. Proto je nutné projednat jejich umístění s PLDS již ve stadiu projektu.

Fakturační elektroměry v majetku PLDS a jim přiřazené řídicí přístroje jsou uspořádány na vhodných trvale přístupných místech odsouhlasených PLDS.

Měření se volí podle napěťové hladiny, do které výroba pracuje a podle jejího výkonu typicky:

- nízké napětí: podle výkonu výroby buď přímé (do 80 A) nebo polopřímé
- vysoké napětí: do výkonu transformátoru 630 kVA včetně - měření na straně nn, polopřímé od výkonu 630 kVA měření na straně vn - nepřímé
- 110 kV: měření na straně 110 kV, nepřímé.

Dodávku a montáž elektroměrů zajišťuje PLDS na vlastní náklady.

Přístrojové měřicí transformátory napětí či proudu jsou součástí zařízení výroby. Přístrojové měřicí transformátory musí být schváleného typu, požadovaných technických parametrov a úředně ověřeny (podrobnosti jsou v Příloze 5 PPLDS: Obchodní měření).

V případě oprávněných zájmů PLDS musí výrobce vytvořit podmínky pro to, aby přes definované rozhraní mohly být na příslušný dispečér PLDS přenášeny další údaje důležité pro bezpečný a hospodárný provoz, např. hodnoty výkonu a stavu vybraných spínačů.

Pozn.: Podrobnosti k měření je zapotřebí upřesnit při projednávání připojení výroby s PLDS.
7 SPÍNACÍ ZAŘÍZENÍ

Pro spojení vlastní výrobní se síťí PPLDS musí být použito spínací zařízení (vazební spínač) minimálně se schopností vypínání zátěže (např. vypínač, odpínač, podporující, úsekový, odpínač), kterému je předřazena zkratová ochrana podle části 8. Tento vazební spínač může být jak na straně nn, tak i na straně vn nebo 110 kV. Pokud se nepředpokládá ostrovní provoz, lze k tomuto účelu použít spínací zařízení generátoru.

Spínací zařízení musí zajišťovat galvanické oddělení ve všech fázích.

Pozn.: Poměrně závažným důsledkem sloučení funkcí oddělení zdroje od sítě při poruchách v sítii a při pracích na připojeném vedení či vymezení poruch je u jednoduchého připojení zdrojů ztráta napětí pro vlastní spotřebu a s tím spojené nepříznivé důsledky při opětovném uvádění do provozu. Z tohoto důvodu považujeme pro takto připojené zdroje za výhodnější, aby při poruchách v DS docházelo přednostně k vypnutí generátoru a napájení vlastní spotřebky po skončení napěťového poklesu či úspěšném cyklu OZ zůstalo zachováno, tedy za účelem připojení, podle obr.4 a obr.11.

Při použití tavných pojistek jako zkratové ochrany u nn generátorů je zapotřebí dimenzovat spínací zařízení minimálně podle vypínacího rozsahu předřazených pojistek.

Výrobce musí prokázat zkratovou odolnost celého zařízení. K tomu mu PPLDS udá velikost příspěvku zkratového
výkonu nárazového zkratového proudu ze sítě. Způsobí-li nová výroba zvýšení zkratového proudu v sítii PPLDS nad hodnoty, na které je zařízení sítě dimenzováno, pak musí výrobce učinit opatření, která výši zkratového proudu z této výroby nebo jeho vliv patřičně omezí, pokud se s PPLDS nedohodne jinak.

Některé příklady připojení vlastních výrobních jsou uvedeny v části 13.
8 OCHRANY

Opatření na ochranu vlastní výroby (např. zkratovou ochranu, ochranu proti přetízení, ochranu před nebezpečným dotykem) je zapotřebí provést podle části 3.4.9 PPLDS. U zařízení schopných ostrůvkového provozu je třeba zajistit chránné i při ostrovním provozu. Nastavení ochran ve vazbě na LDS určuje PLDS, nastavení frekvenčních ochran zohledňuje kromě požadavků PLDS také požadavky provozovatele přenosové soustavy.

K ochraně vlastního zařízení a zařízení jiných odběratelů jsou potřeba další opatření využívající ochran, které při odchytkách napětí a frekvence vybaví příslušná spínací zařízení podle části 7.

Filosofie okamžitého odpojení výrobních zařízení při poklesu napětí ve výjimečných případech. Okamžité odpojení zajišťují ochrany pro tzv. neselektivně vypínané jednotky podle části 8.1, pro zdroje vybavené funkcí podpory síťí i provozem v provozu při krátkodobých poklesech napětí v síti je zapotřebí volit ochrany pro selektivně vypínané výrobní jednotky podle části 8.2.

8.1 NESELEKTIVNĚ VYPÍNANÉ VÝROBNÍ JEDNOTKY
Je zapotřebí zajistit ochrany s následujícími funkcemi:

<table>
<thead>
<tr>
<th>Funkce</th>
<th>rozsah nastavení</th>
<th>Standardní nastavení</th>
<th>Časové zpoždění</th>
<th>Standardní nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podpětí 1. stupeň U<</td>
<td>0.70 U_n až 1.0 U_n</td>
<td>90 % Un</td>
<td>t_U<</td>
<td>0,5 s</td>
</tr>
<tr>
<td>Podpětí 2. stupeň U<<</td>
<td>0.70 U_n až 1.0 U_n</td>
<td>80 % Un</td>
<td>t_U<<</td>
<td>0,1 s</td>
</tr>
<tr>
<td>Nadpětí 1. stupeň U></td>
<td>1.0 U_n až 1.2 U_n</td>
<td>110 % Un</td>
<td>t_U></td>
<td>0,5 s</td>
</tr>
<tr>
<td>Nadpětí 2. stupeň U>></td>
<td>1.0 U_n až 1.2 U_n</td>
<td>120 % Un</td>
<td>t_U>></td>
<td>0,1 s</td>
</tr>
<tr>
<td>Podfrekvence 1. stupeň f<</td>
<td>48 Hz až 50 Hz</td>
<td>48 Hz</td>
<td>t_f<</td>
<td>0,5 s</td>
</tr>
<tr>
<td>Podfrekvence 2. stupeň f<<</td>
<td>48 Hz až 50 Hz</td>
<td>47.5 Hz</td>
<td>t_f<<</td>
<td>0,1 s</td>
</tr>
<tr>
<td>Nadfrekvence f></td>
<td>50 Hz až 52 Hz.</td>
<td>50,2 Hz</td>
<td>t_f></td>
<td>0,5 s</td>
</tr>
</tbody>
</table>

Po dohodě s PLDS lze upustit od 2. stupně uvedených ochran.

Pro ochrany zdrojů s fázovými proudy do 16 A provozovaných paralelně s distribuční sítí, na které se vztahuje ČSN EN 50438 platí následující tabulka

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Maximální vypínačí čas [s]</th>
<th>Nastavení pro vypnutí</th>
</tr>
</thead>
<tbody>
<tr>
<td>nadpětí</td>
<td>0,2</td>
<td>230 V + 15%!</td>
</tr>
<tr>
<td>podpětí</td>
<td>0,2</td>
<td>230 V - 15%!</td>
</tr>
<tr>
<td>nadfrekvence</td>
<td>0,5</td>
<td>52 Hz</td>
</tr>
<tr>
<td>podfrekvence</td>
<td>0,5</td>
<td>47,5 Hz</td>
</tr>
</tbody>
</table>

V některých případech může být s ohledem na síťové poměry třeba jiné nastavení ochran. Proto je jejich nastavení vždy nutné odsouhlasit s PDS. Vhodným podkladem pro tato nastavení jsou studie dynamického chování zdrojů v dané síti.
Podpěťová a nadpěťová ochrana musí být trojfázová.

Výjimku tvoří jednofázové a dvoufázové zdroje do výkonu 4,6 kVA/fázi.

Podfrekvenční a nadfrekvenční ochrana může být jednofázová.

Při připojení výroben k síti PLDS provozované s OZ, které mohou tyto výrobny ohrozit, je zpoždění vyplnění přípustné jen tehyd, když je pro nezpožděné odpojení výrobní při OZ k dispozici zvláštní ochrana.

Na rozpoznání stavu odpojení zdroje od sítě PLDS může být použita též ochrana na skokovou změnu vektoru napětí nebo relé na výkonový skok.

Pozn.: Pro ochranu na skok vektoru zatím není k dispozici metodika pro určení nastavení.

8.2 SELEKTIVNĚ VYPÍNANÉ VÝROBNÍ JEDNOTKY

Nastavení ochran rozpadového místa

Jako základní nastavení ochran rozpadového místa jsou doporučeny hodnoty v následující tabulce.

<table>
<thead>
<tr>
<th>funkce</th>
<th>Rozsah nastavení</th>
<th>Doporučené nastavení ochrany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadpěť 2. stupeň U >></td>
<td>1,00 – 1,30 Un</td>
<td>1,2 Un 1)</td>
</tr>
<tr>
<td>Nadpěť 1. stupeň U ></td>
<td>1,00 – 1,30 Un</td>
<td>1,15 Un 1)</td>
</tr>
<tr>
<td>Podpěť 1. stupeň U <</td>
<td>0,10 – 1,00 Un</td>
<td>0,7 Un</td>
</tr>
<tr>
<td>Podpěť 2. stupeň U <<</td>
<td>0,10 – 1,00 Un</td>
<td>0,3 Un (0,45 Un) 2)</td>
</tr>
<tr>
<td>nadfrekvence f ></td>
<td>50 – 52 Hz</td>
<td>51,5 Hz (50,5 Hz) 3)</td>
</tr>
<tr>
<td>podfrekvence f <</td>
<td>47,5 – 50 Hz</td>
<td>47,5 Hz 4)</td>
</tr>
<tr>
<td>Jalový výkon/podpěť (Q & U<)</td>
<td>0,70 – 1,00 Un</td>
<td>0,85 Un</td>
</tr>
</tbody>
</table>

1) Nastavení ochran a jejich časová zpoždění udává PDS v závislosti na koncepci chránění, způsobu provozu (OZ), přípojném bodě (příp. transformovny nebo v síti) a výkonu výrobní jednotky.

2) Tento napěťový stupeň vyvolá rychlé odpojení od sítě při blízkých zkratech. Nastavení 0,3 Un se volí pro zdroje připojené do sítí 110 kV a napětí měřené na straně vn(odpovídá mu cca 15 % Un v příp. bodě. Nastavení 0,45 Un se volí pro zdroje připojené do sítí vn a při měření napětí na straně nižšího napětí.

3) Nastavení 50,5 Hz platí, když se výrobna nepodílí na kmitočtově závislém snížování činného výkonu.

4) Toto nastavení je závislé na výkonu výroby a kmitočtově závislém přizpůsobení výkonu.

Nastavení se vztahují ke sdruženému napětí v sítích vn a 110 kV. Časy vypnutí se stávají ze součtu časového nastavení a vlastních časů spínačů a ochran.

K provádění funkčních zkoušek ochran je zapotřebí zřídit rozhraní (např. svorkovnici s podélným dělením a zkušebními svorkami).

5 V sítích s izolovaným uzlem vn nebo s kompenzací zemních kapacitních proudů může být v dohodě s PDS použita nadpěťová ochrana jednofázová, připojená na sdružené napětí.
Výrobce je povinen si zajistit sám, aby spínání, kolísání napětí, krátkodobá přerušení vč. OZ nebo jiné přechodové jevy v síti PLDS nevedly ke škodám na jeho zařízení.

Všechny ochrany a vypínací obvody těchto ochran budou připraveny k zaplombování.
9 CHOVÁNÍ VÝROBEN V SÍTI

9.1 ZÁSady podpory sítě

Výrobni zařízení musí být schopna se při dodávce do sítě podílet na udržování napětí. Přitom se rozlišuje mezi statickou a dynamickou podporou sítě.

Požadované hodnoty a charakteristiky pro podporu sítě udává PLDS. Dodržování zadaných hodnot zajišťuje automatické řízení ve výrobě.

Detailní provedení je specifikováno ve smlouvě o připojení.

9.1.1 Statické řízení napětí

Statické udržování napětí v síti je udržování napětí ve smluvně stanovených mezích za normálního provozu v síti při pomalých změnách napětí.

Pokud to vyžadují podmínky v síti, a PLDS tento požadavek uplatní, musí se výrobni zařízení na statickém udržování napětí podílet.

9.1.2 Dynamická podpora sítě

Dynamickou podporu sítě se rozumí udržování napětí při poklesech napětí v sítích vn a zvn, zamezující nežádoucímu odpojení výkonů napájejících sítě vn a rozpadu sítě.

Proto se musí i výrobny v sítích vn a 110 kV podílet na dynamické podporě sítě. To znamená, že musí být technicky schopné zůstat připojené i při poruchách v síti. To se týká všech druhů zkratů (jedno-, dvou-, i třípólových).

Při dynamické podpoře je zapotřebí dodržet následující mezı:

- Při poklesu napětí mezi 100 % a 70 % dohodnutého napájecího napětí Un v přípojném bodě s trváním do 0,7 s (délší než druhý časový stupeň síťové ochrany) musí výrobná zůstat připojená v sítě
- Při poklesu napětí pod 30 % s trváním do 150 ms musí výrobná zůstat připojená k síti; pokud to není technicky možné, může v dohodě s PLDS dojít k nezpožděnému odpojení

Jde-li o připojení do sítě s OZ, pak k odpojení musí dojít v průběhu beznapěťové přestavky. PLDS stanoví, které výrobny se podle jejich předpokládaných technických možností musí podílet na dynamické podpoře sítě. To se děje zadáním nastavení pro rozpadovou síťovou ochranu.

Zařízení uživatelů s výrobami, které při poruchách v napájecí síti přejdou pro pokrytí vlastní spotřeby do ostrovního provozu, musí se až do odpojení od sítě PLDS podílet na podpoře sítě. Zamýšlený ostrovní provoz je zapotřebí odsouhlasit s PLDS v rámci požadavku na připojení.

9.2 Přizpůsobení činného výkonu

Všechny výroby připojené do LDS musí být schopné snižovat činný výkon automaticky v závislosti na kmitočtu v síti a podle poměrů v síti i podle povelů z řídícího dispečinku PLDS nebo se automaticky odpojit od LDS.

9.2.1 Snížení činného výkonu v závislosti na kmitočtu síťů

Všechny výroby připojené do LDS, které se automaticky neodpojí, musí být schopné při kmitočtu nad 50,2 Hz snižovat okamžitý činný výkon gradientem 40 % na Hz – viz obr. A
ΔP = 20\(P_m \) \(\frac{50,2Hz - f_s}{50Hz} \)
při 50,2 Hz < \(f_s \) < 51,5 Hz

\(P_m \) okamžitý dostupný výkon
ΔP snížení výkonu
\(f_s \) frekvence sítě

V rozsahu 47,5 Hz < \(f_s \) < 50,2 Hz žádné omezení
Při \(f_s \) <= 47,5 Hz a \(f_s \) ≥ 51,5 Hz odpojení od sítě.

Obr. A Snížení činného výkonu obnovitelných zdrojů při nadfrekvenci

9.2.2 ŘÍZENÍ ČINNÉHO VÝKONU V ZÁVISLOSTI NA PROVOZNÍCH PODMÍNKÁCH

Výroba musí být provozovatelná se sníženým činným výkonem. PLDS je ve smyslu [1] oprávněn ke změně činného výkonu v následujících stavech sítě:

- potenciální ohrožení bezpečného provozu systému (např. při předcházení stavu nouze a při stavech nouze)
- nutné provozní práce popř. nebezpečí přetížení v sítě PLDS
- nebezpečí vzniku ostrovního provozu
- ohrožení statické nebo dynamické stability
- vzrost frekvence ohrožující systém
- údržba nebo provádění stavebních prací

V těchto případech má PLDS právo vyžadovat automaticky působící přechodné omezení dodávaného činného výkonu nebo odpojení zařízení. PLDS nezasahuje do řízení výrobní, nýbrž zadává požadovanou hodnotu. Snížení dodávaného výkonu na hodnotu požadovanou PLDS v přípojném bodě sítě musí být neprodlené, maximálně v průběhu jedné minuty. Přitom musí být technicky možné snížení až na hodnotu \(0 \% \) bez automatického odpojení výrobné od sítě.

Činný výkon může být opět zvyšován teprve po návratu kmitočtu na hodnotu \(f \leq 50,2 Hz \), pokud aktuální kmitočet nepřekročí 50,2 Hz.

Rozsah necitlivosti musí být do 10 mHz.

9.3 ŘÍZENÍ JALOVÉHO VÝKONU V ZÁVISLOSTI NA PROVOZNÍCH PODMÍNKÁCH

Obecně způsob řízení jalového výkonu závisí vždy na konkrétním místě distribuční soustavy a určuje ho PLDS po konzultaci s výrobcem.

9.3.1 ZDROJE PŘIPOJOVANÉ DO SÍTÍ NN

9.3.1.1 Zdroje do 16 A/fázi včetně

Účiník zdroje za normálních ustálených provozních podmínek při dovoleném rozsahu tolerancí jmenovitého napětí musí být podle [20] mezi 0,95 kapacitní a 0,95 induktivní za předpokladu, že činná složka výkonu je nad 20 \% jmenovitého výkonu zdroje.
9.3.1.2 **FVE do 4.6 kVA/fázi včetně**

U fotovoltaických elektráren do výkonu 4.6 kVA/fázi se kompenzace účiníku nepožaduje.

9.3.1.3 **Ostatní zdroje**

Účiník zdroje za normálních ustálených provozních podmínek při dovoleném rozsahu tolerancí jmenovitého napětí musí být mezi 0,95 kapacitní a 0,95 induktivní za předpokladu, že činná složka výkonu je nad 20 % jmenovitého výkonu zdroje.

U výrobců druhé kategorie podle [22] musí být při dodávce činného výkonu do LDS a při dovoleném rozsahu tolerancí jmenovitého napětí účiník v předávacím místě mezi 0,95 kapacitní a 0,95 induktivní za předpokladu, že činná složka výkonu je nad 20 % jmenovitého proudu (transformátoru proudu) předávacího místa.

Hodnotu účiníku v předávacím místě výrobny určuje PPLDS.

9.3.1.4 **Zdroje v síťích vn a 110 kV**

Jalový výkon výrobny musí být od instalovaného výkonu 100 kVA řiditelný. Dohodnutý rozsah jalového výkonu musí využitelný v průběhu několika minut a libovolně často.

Při dodávce činného výkonu je nastavení jalového výkonu zadáváno PPLDS buď pevnou hodnotou, nebo když to provoz sítě vyžaduje dálkově nastavitelnou žádanou hodnotou.

Žádaná hodnota je buď:

- pevná hodnota zadaného účiníku cos φ
- hodnota účiníku cos $\varphi = f (P)$
- zadaná hodnota jalového výkonu
- charakteristika Q (U)

Pokud je PPLDS zadána charakteristika, musí být automaticky nastavena odpovídající hodnota jalového výkonu:

- Pro charakteristiku cos $\varphi = f (P)$ v průběhu 10 s
- Pro charakteristiku Q (U) nastavitelně mezi 10 s a jednou minutou (udá PPLDS)

Stejně jako zvolený způsob řízení, tak i žádané hodnoty zadává PPLDS podle potřeby individuálně pro každou výrobnu. Při zadávání vychází PLDS také z technických možností dané výrobny.

Zadání může být buď:

- Dohodou na hodnotě nebo harmonogramu nebo
- On-line zadáváním

Při variantě on-line zadávání musí vždy po novém zadání dosažen nový pracovní bod výměny jalového výkonu nejpozději po jedné minutě. U kompenzačního zařízení zdrojů je zapotřebí přehlížet ke způsobu provozu vlastní výrobní a z toho vyplývajících zpětných vlivů na síťové napětí.

Při silně kolísajícím výkonu pohonu musí být kompenzace jalového výkonu automaticky a dostatečně rychle regulována.

Kompenzační kondenzátory nesmějí být připínány před zapnutím generátoru. Při vypínání generátoru musí být odpojeny současně.

Provoz zdrojů může vyžadovat opatření k omezení napětí harmonických a pro zamezení nepřípustného zpětného ovlivnění HDO. S PLDS je proto zapotřebí odsouhlasit výkon, zapojení a způsob regulace kompenzačního zařízení, případně i hrazení harmonických nebo frekvence HDO vhodnými indukčnostmi.

Pro jednoznačné přiřazení pásem účiníku slouží následující tabulka. Pro předcházení rozporům při hodnocení účiníku se přitom doporučuje používat jednotně spotřebičovou orientaci.
Způsob kompenzace, včetně (de)kompenzace rozvodů výrobní je nutno odsouhlasit s PLDS.

TAB. 3

<table>
<thead>
<tr>
<th>Příklad</th>
<th>Zdrojová orientace</th>
<th>Spotřebičová orientace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronní generátor</td>
<td>$P > 0$ a $Q > 0$</td>
<td>$P < 0$ a $Q < 0$</td>
</tr>
<tr>
<td>(přebuzený)</td>
<td>$0^\circ < \varphi < 90^\circ$</td>
<td>$180^\circ < \varphi < 270^\circ$</td>
</tr>
<tr>
<td>Asynchronní generátor</td>
<td>$P > 0$ a $Q < 0$</td>
<td>$P < 0$ a $Q > 0$</td>
</tr>
<tr>
<td></td>
<td>$270^\circ < \varphi < 360^\circ$</td>
<td>$90^\circ < \varphi < 180^\circ$</td>
</tr>
<tr>
<td>Synchronní motor</td>
<td>$P < 0$ a $Q > 0$</td>
<td>$P > 0$ a $Q < 0$</td>
</tr>
<tr>
<td>(přebuzený)</td>
<td>$90^\circ < \varphi < 180^\circ$</td>
<td>$270^\circ < \varphi < 360^\circ$</td>
</tr>
<tr>
<td>Asynchronní motor</td>
<td>$P < 0$ a $Q < 0$</td>
<td>$P > 0$ a $Q > 0$</td>
</tr>
<tr>
<td></td>
<td>$180^\circ < \varphi < 270^\circ$</td>
<td>$0^\circ < \varphi < 90^\circ$</td>
</tr>
</tbody>
</table>
10 PODMÍNKY PRO PŘIPOJENÍ

K zabránění zavlečení zpětného napětí do sítí PLDS je zapotřebí zajistit technickými opatřeními, aby připojení vlastní výroby k sítí PLDS bylo možné pouze tehdy, když jsou všechny fáze sítě pod napětím.

K připojení může být použit jak spínač, který spojuje celé zařízení odběratele se sítí, tak i spínač, který spojuje generátor popř. více paralelních generátorů se zbylým zařízením odběratele. Zapnutí tohoto vazebního spínače musí být blokováno do té doby, dokud není na každé fázi napětí minimálně nad rozbočovou hodnotou podpěťové ochrany. K ochraně vlastní výroby se doporučuje časové způždění mezi obnovením napětí v síti a připojením výroby v rozsahu minut.

Časové odstupňování při připojování generátorů a blokových transformátorů zdroje je zapotřebí odsouhlasit s PLDS.

10.1 ZVÝŠENÍ NAPĚTÍ

Zvýšení napětí vyvolané provozem připojených výroben nesmí v nejnejzjavnějším případě (připojném bodu) překročit 2% pro výroby s připojným místem v síti vn a 110 kV ve srovnání s napětím bez jejich připojení, současně nesmí být překročeny limity napětí v předávacím místě zdroje podle [3].

\[\Delta u_{vn,110} \leq 2\%, \] \hspace{1cm} (1)

pro výroby s připojným místem v síti nn nesmí překročit 3%, tedy

\[\Delta u_{nn} \leq 3\%. \] \hspace{1cm} (2)

Úroveň napětí musí být posouzena s ohledem na výši skutečné hodnoty napětí v předávacím místě.

Pokud je v síti nn a vn jen jedno připojné město, je možné tuto podmínku (2), (3) posoudit jednoduše pomocí zkratového poměru výkonů

\[k_{k1} = \frac{S_{kV}}{\Sigma S_{A max}}, \] \hspace{1cm} (3)

kde \(S_{kV} \) je zkratový výkon v připojném bodu a \(\Sigma S_{A max} \) je součet maximálních zdánlivých výkonů všech připojených/plánovaných výroben.

V případě jediného předávacího místa v síti bude podmínka pro zvýšení napětí dodržena vždy, když zkratový poměr výkonů \(k_{k1} \) je pro výroby s předávacím místem v síti vn

\[k_{k1 vn} \geq 50, \] \hspace{1cm} (4)

podobně pro výroby s předávacím místem v síti nn

\[k_{k1 nn} \geq 33. \] \hspace{1cm} (5)

Pokud je síť nn a vn silně induktivní, pak je posouzení pomocí činítele \(k_{k1} \) příliš konzervativní, tzn., že dodávaný výkon bude silněji omezen, než je zapotřebí k dodržení zvýšení napětí. V takovém případě je zapotřebí provést výpočet s komplexní hodnotou impedance sítě s jejím fázovým úhlem \(\psi_{kV} \), který poskytne mnohem přesnější výsledek.

Podmínka pro maximální výkon pak je pro výroby s předávacím místem v síti vn

\[S_{A max} \leq \frac{2\% \cdot S_{kV}}{\cos(\psi_{kV} - \varphi)} = \frac{S_{kV}}{50 \cdot \cos(\psi_{kV} - \varphi)}, \] \hspace{1cm} (6)
PŘÍLOHA 4 PPLDS: PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PLDS

pro výrobny s předávacím místem v síti nn

\[S_{A_{\text{max},nn}} \leq \frac{3\% \cdot S_{kV}}{|\cos(\psi_{kV} - \varphi)|} = \frac{S_{kV}}{33 \cdot |\cos(\psi_{kV} - \varphi)|} \] \(\text{(7)} \)

kde \(\varphi \) je fázový úhel mezi proudem a napětím výroby při maximálním zdánlivém výkonu \(S_{A_{\text{max}}} \).

U výroben, které dodávají do sítě jalový výkon (např. přebuzené synchronní generátory, pulzní měniče), přitom platí:

\[P > 0 \quad \text{a} \quad Q > 0 \]
\[0^\circ \leq \varphi_E \leq 90^\circ. \]

U výroben, které odebírají ze sítě jalový výkon (např. asynchronní generátory, podbuzené synchronní generátory, sítě řízené střídače) platí:

\[P > 0 \quad \text{a} \quad Q < 0 \]
\[270^\circ \leq \varphi_E \leq 360^\circ (-90^\circ \leq \varphi_E \leq 0^\circ). \]

Pokud pro cosinový člen, tj. \(\cos(\psi_{kV} - \varphi) \) v rovnici (2) vychází hodnota menší než 0,1, pak se zřetelem na nejistoty tohoto výpočtu odhaduje 0,1.

V mnoha případech je v praxi udáno maximální připojitelný výkon \(S_{A_{\text{max}}} \), pro který je pak zapotřebí určit zvýšení napětí v připojném bodu. K tomu je používán následující vztah:

\[\Delta u_{\text{AV}} = \frac{S_{A_{\text{max}}} \cdot \cos(\psi_{kV} - \varphi)}{S_{kV}}. \] \(\text{(8)} \)

V propojených sích, v sích 110 kV a/nebo při provozu více rozptýlených výroben v síti je zapotřebí určovat zvýšení napětí s pomocí komplexního chodu sítě. Přitom musí být dodržena podmínka pro \(\Delta u_{\text{AV}} \) v nejneprůznějiším připojném bodě.

Při posuzování připojitelnosti výroben se vychází z neutrálního účinku v předávacím místě do LDS, pokud PLDS vzhledem k místním podmínkám (bilance jalové energie, napětí v síti) nestanoví jinak. V tomto případě je pak zapotřebí doložit podrobnějšími výpočty bilanci ztrát v síti bez zdroje a při jeho provozu.

10.2 ZMĚNY NAPĚTÍ PŘI SPÍNÁNÍ

Změny napětí ve společném napájecím bodě, způsobené připojováním a odpojováním jednotlivých generátorů nebo zařízení, nevyvolávají nepříznivé zpětné vlivy, tj. pokud největší změna napětí pro výroby s předávacím místem v síti nn nepřekročí 3 %.

\[\Delta u_{\text{max},nn} \leq 3\% . \] \(\text{(4)} \)

Pro výrobny s předávacím místem v síti vn platí

\[\Delta u_{\text{max},vn} \leq 2\% . \] \(\text{(10)} \)

Pro výrobny v síti 110 kV platí pro omezení změny napětí vyvolané spínáním:

a) Normální provoz:
Spínání jedné výrobní jednotky (např. jednoho generátoru)
\[\Delta u_{\text{max}} \leq 0.5\% \] (11)

Spínání celého zařízení (např. více generátorů)
\[\Delta u_{\text{max}} \leq 2\% \] (12)

b) Poruchový provoz

Pro změnu napětí při spínání celého zařízení platí
\[\Delta u_{\text{max}} \leq 5\% \] (13)

V závislosti na zkratovém výkonu \(S_{kV} \) v síti PLDS a jmenovitém zdánlivém výkonu \(S_{nE} \) jednotlivé výrobné lze odhadnout změnu napětí
\[\Delta u_{\text{max}} = k_{\text{imax}} \cdot \frac{S_{nE}}{S_{kV}}. \] (54)

Činitel \(k_{\text{imax}} \) se označuje jako “největší spínací ráz” a udává poměr největšího proudu, který se vyskytuje v průběhu spínacího pochodu (např. napětí \(I_a \)) ke jmenovitému proudu generátoru nebo zařízení, např.
\[k_{\text{imax}} = \frac{I_a}{I_{nG}}. \] (6)

Výsledky na základě tohoto “největšího zapínacího rázu” jsou na bezpečné straně.

Pro činitel zapínacího rázu platí následující směrné hodnoty:
- \(k_{\text{imax}} = 1 \) synchronní generátor s jemnou synchronizací, střídače
- \(k_{\text{imax}} = 4 \) asynchronní generátor, připojený s 95 až 105 % synchronních otáček, pokud nejsou k dispozici přesnější údaje o způsobu omezení proudu. S ohledem na krátkodobost přechodového jevu musí být dodržena dále uvedená podmínka pro velmi krátké poklesy napětí
- \(k_{\text{imax}} = I_a/I_{nG} \) asynchronní generátor motoricky rozbitáno ze sítě
- \(k_{\text{imax}} = 8 \) pokud není známo \(I_a \).

Asynchronní stroje připojené přibližně se synchronními otáčkami mohou vlivem svých vnitřních přechodných jevů způsobit velmi krátké poklesy napětí. Takovéto pokles smí dosáhnout dvojnásobku jinak přípustné hodnoty, tj. pro sítě vn 4 %, pro sítě nn 6 %, pokud netrvá déle než dvě periody a následující odchylka napětí od hodnoty před poklesem napětí nepřekročí jinak přípustnou hodnotu.

S ohledem na minimalizaci zpětného vlivu na síť PLDS je zapotřebí zamezit současněmu spínání více generátorů v jednom předávacím místě. Technické řešení je časové odstupňování jednotlivých spínání, které je závislé na vyvolaných změnách napětí. Při maximálním přípustném výkonu generátoru musí být minimálně 1,5 minutey. Při zdánlivém výkonu generátoru do poloviny přípustné hodnoty postačí odstup 12 s.

10.3 PŘIPOJOVÁNÍ SYNCHRONNÍCH GENERÁTORŮ

U synchronních generátorů je nutné takové synchronizační zařízení, se kterým mohou být dodrženy následující podmínky pro synchronizaci:
- rozdíl napětí \(\Delta U < \pm 10\% U_n \)
- rozdíl frekvence \(\Delta f < \pm 0.5 \text{ Hz} \)
- rozdíl fáze \(\Delta \phi < \pm 10^\circ \).
V závislosti na poměru impedance sítě k výkonu generátoru může být nutné k zabránění nepřípustných zpětných vlivů na síť stanovit pro spínání užší mezí.

10.4 PŘIPOJOVÁNÍ ASYNCHRONNÍCH GENERÁTORŮ

Asynchronní generátor rozbíhané pohonem musí být připojeny bez napětí při otáčkách v mezích 95 % až 105 % synchronních otáček. U asynchronních generátorů schopných ostrovního provozu, které nejsou připojovány bez napětí, je zapotřebí dodržet podmínky spínání jako pro synchronní generátor.

10.5 ZVLÁŠTNÍ POŽADAVKY NA VÝROBNY S OBNOVITELNÝMI ZDROJI S VÝKONEM NAD 15 MW PŘIPOJOVANÉ DO SÍTÍ 110 KV

VŠEOBECNĚ

Tato část vychází z německého Transmission Code 2007 VDN [2], který se venuje podmínkám pro zachování provozu zdrojů připojených do síť 110 kV a vyššího napětí při poruchách v síti mimo jejich vlastní vnitřní síť.

Cílem těchto požadavků je nejen zamezit výpadku zdrojů při napěťových poklesech, ale naopak napětí určitým způsobem podporovat, tak jako je tomu u klasických synchronních generátorů. Dalším cílem je reagovat na nárůst frekvence snížením dodávaného činného výkonu ještě předtím, než by došlo k jejich odpojení při nadfrekvenci.

10.5.1 URČENÍ JMENOVITÉHO VÝKONU

(1) Jmenovitý výkon výrobní jednotek v jednom připojném bodě sítě. Podle toho se např. u větrných elektráren pohlíží na instalovaný výkon celého parku jako na jmenovitý výkon (příp. je zapotřebí tuto sumarizaci použít pro galvanicky oddělené provozované skupiny sítí 110 kV).

10.5.2 DODÁVKA ČINNÉHO VÝKONU

(1) Činný výkon výrobních jednotek s obnovitelnými zdroji (OZE) musí být řiditelný podle pokynů provozovatele DS a LDS, aby mohl působit proti ohrožení nebo poruše rovnováhy v systému. Přitom musí být výstupní výkon v každém provozním stavu a z každého provozního bodu redukovatelný na maximální hodnotu výkonu (zadanou hodnotu) udanou provozovatelem sítě a odpovídá procentní hodnotě vztažené k připojnemu výkonu zdroje. Snížení dodávaného výkonu na signalizovanou hodnotu musí činit minimálně 10 % připojného výkonu za minutu, aniž by došlo k jejich odpojení při nadfrekvenci.

(2) Všechny výrobny z obnovitelných zdrojů musí za provozu při frekvenci vyšší než 50,2 Hz snížit okamžitý činný výkon s gradientem 40 %/Hz ze současného dostupného výkonu generátoru (obr. 1).

\[
\Delta P = 20P_m \frac{50,2Hz-f_s}{50Hz} \quad \text{při } 50,2 \text{ Hz} < f_s < 51,5 \text{ Hz}
\]

\[
P_m \text{ okamžitý dostupný výkon}
\]

\[\Delta P \text{ snížení výkonu}
\]

\[f_s \text{ frekvence síť}
\]

V rozsahu 47,5 Hz < f_s < 50,2 Hz žádné omezení
Při f_s <= 47,5 Hz a f_s >= 51,5 Hz odpojení od sítě.
Obr. 1 Snížení činného výkonu obnovitelných zdrojů při nadfrekvenci

(3) Při návratu frekvence na hodnotu ≤ 50.05 Hz smí činný výkon opět růst, pokud aktuální frekvence nepřekročí 50.2 Hz. Tato regulace je zajištěna decentralně na každém generátoru. Pásmo necitlivosti musí být menší než 10 mHz.

10.5.3 DODÁVKA JALOVÉHO VÝKONU

Všechny výroby s obnovitelnými zdroji se musí při výměně jalového výkonu chovat takto:

(1) Dodávky jalového výkonu musí po několika minutách odpovídat hodnotě zadané provozovatelem sítě.

(2) Pracovní bod pro výměnu jalového výkonu v ustáleném stavu se stanovuje podle požadavků sítě. Hodnota jalového výkonu se zadává jedním ze tří způsobů:
 • účinník ($\cos \varphi$)
 • hodnota jalového výkonu (Q v MVAr)
 • hodnota napětí (U v kV), příp. s tolerančním pásmem

(3) Zadání může být dáno:
 • sjednanou hodnotou nebo event. průběhem
 • charakteristikou v závislosti na pracovním bodu výroby
 • online zadávanou požadovanou hodnotou

(4) V případě online zadávání požadované hodnoty musí dojít nejpozději do jedné minuty k přechodu do nového pracovního bodu pro výměnu jalové energie v přípojném bodě.

10.5.4 CHOVÁNÍ PŘI PORUCHÁCH V SÍTI

(1) Provozovatel výroby musí sám přijmout opatření k zamezení škodám na jeho vlastním výrobním zařízení při automatickém OZ v síti provozovatele DS.

(2) Provozovatel zdroje využívajícího obnovitelné energie musí sám zajistit bezpečné zjištění a zvládnutí možného ostrovního provozu zařízení, i když nedojde k překročení/poklesu napětí a frekvence pod přípustné definované meze.

Vedle systémových funkcí, jako podpětí a nadpětí, podfrekvence a nadfrekvence, které jsou již ve většině případů schopné rozpoznat vznik ostrovního provozu, se požaduje, aby od pomocných kontaktů vypínače na straně nižšího nebo vyššího napětí síťového transformátoru byl dán povel na sjetí a vypnutí všech jednotlivých generátorů výroby tak, aby nejpozději za 3 s byl ostrovní provoz ukončen. Dovoleny jsou i jiné způsoby zjištění ostrovního provozu, pokud nevyvolávají nadbytečnou činnost při systémových poruchách.

(3) Výrobní jednotka typu 1 má synchronní generátor přímo připojený k síti. Není-li tato podmínka splněna, jde o výrobní jednotku typu 2.

(4) Pro výrobní jednotku typu 1 platí v zásadě požadavky v předchozích částech. Požadavky na výrobní jednotky typu 2 jsou v následujících částech.

(5) Při poruchách v síti, které jsou mimo, chráněné pásmo výroby nesmí dojít k odpojení od sítě. Po dobu trvání poruchy je zapotřebí do sítě dodávat příspěvek ke zkratovému proudu. Zkratový příspěvek je zapotřebí dohodnout s provozovatelem sítě podle druhu zařízení, např. asynchronních generátorů nebo střídačů.

(6) Při poklesu napětí v přípojném bodě pod 85 % vztahového napětí (např. 110 kV x 0.85 = 93.5 kV) a jeho setrvání při současném odběru jalového výkonu ze sítě v přípomíněm bodě (podbusený provoz) musí být výroba odpojena od sítě s časovým zpožděním 0.5 s. Hodnota napětí se vztahuje k největšímu ze tří sdruženým napětů. K odpojení má dojít na generátorovém vypínači. Tato funkce plní kontrolu podpory napětí.

(7) Při poklesu a setrvání napětí na nižší napěťové straně každého transformátoru zdroje na a pod hodnotu 80 % spodní meze pásmá napětí (např. 690 V x 0.8 = 525 V) musí být vždy jedna čtvrtina generátorů odpojena od
síť za 1.5 s, další za 1.8 s, za 2.1 s a 2.4 s. Hodnota napětí se vztahuje k největšímu ze tří sdružených napětí. Časové odstupňování může být v jednotlivých případech dohodnuto jinak.

(8) Při vzniku a setrvání napětí na straně nižšího napětí transformátoru zdroje na a nad 120 % horní meze napěťového pásma (např. 690 V × 1.05 × 1.2 = 870 V) musí být příslušný generátor odpojen od sítě s časovým zpožděním 100 ms. Hodnota napětí se vztahuje k nejnižšímu ze tří sdružených napětí.

(9) Přidržový poměr měřicího členu pro podpěťovou, resp. nadpěťovou systémovou automatiku musí být ≤ 1.02 resp. ≥ 0.98.

(10) Při frekvenci mezi 47.5 Hz a 51.5 Hz je automatické odpojení od sítě z důvodu odchylky frekvence od 50 Hz nepřípustné. Při poklesu frekvence pod 47.5 Hz musí dojít k nezpožděnému odpojení, resp. při vzrůstu nad 51.5 Hz smí dojít k automatickému odpojení od sítě.

(11) Doporučuje se zajistit funkce nad- a podfrekvence, pod- a nadpěť na generátoru jedním zařízením. Obecně se tyto funkce včetně funkce podpěti v přípojném bodě nazývají systémová automata.

(12) Po odpojení výrobné od sítě nadfrekvenci, podfrekvenci, podpěť a nadpěť nebo po ukončení ostrovního provozu je dovolena automatická synchronizace jednotlivých generátorů k síti při napětí v přípojném bodě sítě 110 kV vyšším než 105 kV. Hodnota napětí se vztahuje k nejnižšímu z tří sdružených napětí. Nárůst činného výkonu dodávaného do sítě provozovatele sítě pod takovému odpojení nesmí překročit maximálně 10 % připojeného výkonu za minutu.

(13) Třípolové zkraty nebo symetrické poklesy napětí při poruchách nesmí nad mezí 1 v obr. 2 věst k nestabilité nebo odpojení výrobné od sítě.

(14) Uvnitř šťavnaté oblasti a nad mezí 2 v obr. 2 platí:

Všechny výrobny musí poruchu překonat -projet bez odpojení do sítě. Pokud nějaká výrobná nemůže vzhledem ke koncepci připojení (zařízení včetně generátorů) k síti splnit tuto podmínku bez odpojení od sítě, je dovoleno v dohodě s provozovatelem sítě posunout této meze při současné zkrácení resynchronizačního času a zajištění minimálního napájení jalovým proudem při poruše. Napájení jalovým proudem a resynchronizace musí probíhat tak, aby výrobná splňovala vhodnou formou požadavky sítě v přípojném bodě.

Pokud při projetě poruchy dojde k nestabilitě nějakého generátoru nebo náhle nějaké ochrany generátoru, je dovoleno po dohodě s provozovatelem sítě krátkodobé odpojení výrobné (KOV) od sítě. Resynchronizace musí
následovat nejpozději do 2 s po začátku krátkodobého odpojení. Dodávka činného výkonu musí růst na původní hodnotu minimálně s gradientem 10 % jmenovitého výkonu generátoru za sekundu

(15) Pod mezí 2 v obr. 2 je KOV od sítě vždy dovoleno. Přitom jsou ve výjimečných případech po dohodě v PLDS možné resynchronizační časy větší než 2 s a nárůst činného výkonu po vypnutí poruchy menší než 10 %/s min.

(16) Všechna výrobní zařízení, která se v průběhu poruchy neodpojí od sítě, musí ihned po vypnutí poruchy dodávat činný výkon do sítě a růst s gradientem minimálně 20% jmenovitého výkonu za sekundu na původní hodnotu.

(17) Výrobny musí při poklesu napětí podporovat napětí v sítě přídavným jalovým proudem. K tomu je zapotřebí při napěťovém poklesu větším než 10 % efektivního napětí generátoru aktivovat regulaci napětí podle obr. 3. Tato regulace napětí musí zajistit jalový proud na straně nižšího napětí transformátoru zdroje s příspěvkem minimálně 2 % jmenovitého proudu na procento poklesu napětí. Zařízení musí být schopné dodávat do sítě požadovaný jalový proud v průběhu 20 ms (doba regulační odezvy). V případě potřeby musí být možná dodávka jalového proudu minimálně 100 % jmenovitého proudu.

(18) Po návratu napětí do pásma necitlivosti musí regulace napětí zůstat zachována podle zadané charakteristiky po dalších 500 ms.

(19) Při příliš velké vzdálenosti generátorů výroby od připojněho bodu, které by vedly k neúčinnosti regulace napětí, bude PLDS požadováno měření poklesů napětí v připojném bodě a regulace napětí závislá na této měřené hodnotě.

10.6 VÝJIMKY PRO VÝROBNY S OBNOVITELNÝMI ZDROJI

(1) Výroby s obnovitelnými zdroji mohou být zprošťeny povinnosti primární regulace.
(2) Podle schopností konvenčních výrobních zařízení při vzniku náhlé výkonové nerovnováhy v důsledku rozdělení síťí, vytvoření ostrovů a k zajištění obnovy provozu, musí výrobně s obnovitelnými zdroji užívat takové řídící a regulační charakteristiky, které odpovídají současnému stavu techniky.
11 ZPĚTNÉ VLIVY NA NAPÁJECÍ SÍŤ

Aby nebyla rušena zařízení dalších odběratelů a provozovaná zařízení PLDS, je zapotřebí omezit zpětné vlivy místních výroben. Pro posouzení je třeba vycházet ze zásad pro posuzování zpětných vlivů v jejich přípustných mezí [8], [9], [10].

Bez další kontroly zpětných vlivů mohou být výroby připojeny, pokud poměr zkratového výkonu sítě S_{kv} ke jmenovitému výkonu celého zařízení S_A je větší než 500.

Pokud výrobce nechá své zařízení ověřit v uznávaném institutu, pak lze do posuzování připojovacích podmínek zahrnout příznivější činitel $S_{kv}/S_{GA} (<500)$.

Pro individuální posouzení připojení jedné nebo více vlastních výroben v jednom společném napájecím bodu je třeba vycházet z následujících mezních podmínek:

11.1 ZMĚNA NAPĚTÍ

Změna napětí

- $\Delta U \leq 3\% U_n$ (pro společný napájecí bod v síti nn)
- $\Delta U \leq 2\% U_n$ (pro společný napájecí bod v síti vn a 110 kV- viz též část 10).

Tyto hodnoty platí za předpokladu dodržení mezi napětí podle [3].

Flikr

DLOUHODOBÝ FLIKR

Pro posouzení jedné nebo více výroben v jednom předávacím místě je zapotřebí se zřetelem na kolísání napětí vyvolávající flikr dodržet ve společném napájecím bodě nn a vn mezní hodnotu

$$ \text{P}_{fl} \leq 0,46. \quad (7) $$

ve společném napájecím bodě 110 kV mezní hodnotu

$$ \text{P}_{fl} \leq 0,37. \quad (8) $$

Dlouhodobá míra flikru P_{fl} jednoho zdroje může být určena pomocí činitelé flikru c jako

$$ \text{P}_{fl} = c \cdot \frac{S_{nE}}{S_{kv}}, \quad (18) $$

S_{nE} je jmenovitý výkon zařízení.

Pokud je hodnota vypočtená podle předchozí rovnice větší než 0,46, je možné do výpočtu zahrnout fázové úhly a počítat podle následujícího vztahu

$$ \text{P}_{fl} = c \cdot \frac{S_{nE}}{S_{kv}} \cos(\psi_{kv} + \varphi_i). \quad (19) $$

Pozn.: Je-li ve zkušebním protokolu zařízení připojené hodnota činitele flikru c pro úhel impedance sítě ψ a tím je udána jen hodnota c_{ψ} použije se tato hodnota flikru. Přitom je však třeba vžít 0 do výpočtu a počítat podle následujícího vztahu

$$ \text{P}_{fl} = c \cdot \frac{S_{nE}}{S_{kv}} \cos(\psi_{kv} + \varphi_i). \quad (19) $$

U výrobny s více jednotlivými zařízeními je zapotřebí vypočítat P_{fl} pro každé zvlášť a výslednou hodnotu pro flikr ve společném napájecím bodě určit podle následujícího vztahu

$$ \text{P}_{fl_{res}} = \sqrt{\sum_i \text{P}_{fl_i}^2}. \quad (20) $$
U zařízení s n stejnými jednotkami je výsledný činitel pro flikr

\[P_{\text{ltres}} = \sqrt{n} \cdot P_{\text{lt}} = \sqrt{n} \cdot c \cdot \frac{S_{\text{nE}}}{S_{\text{kV}}} \quad (21) \]

11.2 PROUDY HARMONICKÝCH

Harmonické vznikají především u zařízení se střídači nebo měniči frekvence. Harmonické proudy emitované těmito zařízeními musí udat výrobce, např. zprávou o typové zkoušce.

11.2.1 VÝROBNÝ V SÍTI NN

Pokud výrobny splňují požadavky na velikosti emise harmonických proudů \(I_\nu \) podle [23] třída A (tabulka 1), resp. [24] (tabulka 2 a 3), lze považovat vliv emitovaných harmonických proudů na síť LDS za přípustný. Pokud nejsou meze v této normách dodrženy, je možné pro posouzení připojitelnosti bez přídavných opatření použít následující jednoduchá kritéria:

\[\text{Přípustný proud } I_{\text{vmn}} = \frac{S_{\text{kV}}}{\sin \psi_{\text{kV}}} \cdot i_\nu \quad (22) \]

Přípustný proud \(i_\nu \) je uveden v TAB.4.

\[\sin \psi_{\text{kV}} = \frac{X_k}{Z_k} \quad (\cong 1, \text{ když je předávací místo blízko transformátoru } \text{vn/nn}) \]

TAB. 4

<table>
<thead>
<tr>
<th>Řád harmonických (\nu, \mu)</th>
<th>Přípustný vztažný proud (i_{\nu, \mu}) [A/MVA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 (\text{A/MVA})</td>
</tr>
<tr>
<td>5</td>
<td>1,5 (\text{A/MVA})</td>
</tr>
<tr>
<td>7</td>
<td>1 (\text{A/MVA})</td>
</tr>
<tr>
<td>9</td>
<td>0,7 (\text{A/MVA})</td>
</tr>
<tr>
<td>11</td>
<td>0,5 (\text{A/MVA})</td>
</tr>
<tr>
<td>13</td>
<td>0,4 (\text{A/MVA})</td>
</tr>
<tr>
<td>17</td>
<td>0,3 (\text{A/MVA})</td>
</tr>
<tr>
<td>19</td>
<td>0,25 (\text{A/MVA})</td>
</tr>
<tr>
<td>23</td>
<td>0,2 (\text{A/MVA})</td>
</tr>
<tr>
<td>25</td>
<td>0,15 (\text{A/MVA})</td>
</tr>
</tbody>
</table>
| 25 < \(\nu < 40 \) | 0,15 \(\cdot \frac{25}{\nu} \)
| \(\mu < 40^{\circ} \) | 0,15 \(\cdot \frac{25}{\nu} \)
| sudé | 1,5/\(\nu \) |
| \(\mu < 40 \) | 1,5/\(\nu \) |
| 42 <\(\mu, \nu < 178^{\circ} \) | 4,5/\(\nu \) |

a liché.

b Celočíselné a neceločíselné v pásmu šířky 200 Hz od střední frekvence

Měření podle ČSN EN 61000-4-7
Tento výpočetní postup nemůže být použit, pokud je společný napájecí bod v sítě vn (např. větrná elektrárna).

11.2.2 VÝROBNÝ V SÍTI VN

Pro pouze jediné předávací město v sítě vn lze určit celkové v proudění pro jednotlivé zařízení podle vzorce

$$ I_{v,pr} = i_{v,pr} \cdot S_{AV} \cdot \frac{S_A}{S_{AV}} \cdot \frac{S_{kV}}{S_{AV}}. \quad (23) $$

Pokud je ve společném napájecím bodu připojeno několik zařízení, pak se určí harmonické proudy přípustné pro připojené zařízení násobením výkonu S_A k velkému připojilem bodu

$$ I_{v,pr} = i_{v,pr} \cdot S_{AV} \cdot \frac{S_A}{S_{AV}} \cdot \frac{S_{kV}}{S_{AV}}. \quad (24) $$

Tab. 5 uvedené výkony zařízení, určených v tabulce, jsou uvedeny v Tab. 5.

5. Tabulka přípustných proudů harmonických

| Řád harmonického | Přípustný vztahový proud harmonických
<table>
<thead>
<tr>
<th>µ,ν</th>
<th>sítě 10 kV</th>
<th>sítě 22 kV</th>
<th>sítě 35 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,115</td>
<td>0,058</td>
<td>0,033</td>
</tr>
<tr>
<td>7</td>
<td>0,082</td>
<td>0,041</td>
<td>0,023</td>
</tr>
<tr>
<td>11</td>
<td>0,052</td>
<td>0,026</td>
<td>0,015</td>
</tr>
<tr>
<td>13</td>
<td>0,038</td>
<td>0,019</td>
<td>0,011</td>
</tr>
<tr>
<td>17</td>
<td>0,022</td>
<td>0,011</td>
<td>0,006</td>
</tr>
<tr>
<td>19</td>
<td>0,016</td>
<td>0,009</td>
<td>0,005</td>
</tr>
<tr>
<td>23</td>
<td>0,012</td>
<td>0,006</td>
<td>0,003</td>
</tr>
<tr>
<td>25</td>
<td>0,01</td>
<td>0,005</td>
<td>0,003</td>
</tr>
<tr>
<td>>25 nebo sudé</td>
<td>0,06/ν</td>
<td>0,03/ν</td>
<td>0,017/ν</td>
</tr>
<tr>
<td>µ < 40</td>
<td>0,06/µ</td>
<td>0,03/µ</td>
<td>0,017/µ</td>
</tr>
<tr>
<td>µ > 40</td>
<td>0,16/µ</td>
<td>0,09/µ</td>
<td>0,046/µ</td>
</tr>
</tbody>
</table>

Pro sčítání proudů harmonických, pocházejících jak od různých odběratelů, tak i výroben plná následující pravidla

- usměrňovače řízené sítí (6- nebo 12 pulzní)
- Harmonické typické pro usměrňovač (řádu 5., 7., 11., 13., atd.) i pro netypické nízkých řádů ($v < 7$) se sčítají aritmeticky

$$ I_v = \sum_{i=1}^{n} I_{v,i} \quad (9) $$

Pro netypické harmonické vyšších řádů ($v > 7$) je celkový harmonický proud určitého řádu roven odmocnině ze součtu kvadrátů harmonických proudů tohoto řádu.
\[I_v = \sqrt{\sum_{i=1}^{n} I_{v_i}^2} \quad (26) \]

- pulsátorově modulované střídače

Pro řád \(\mu \), který v zásadě není celočíselný, ale pro hodnoty \(\mu > 11 \) také obsahuje celočíselné hodnoty, je celkový proud rovný odmocnině ze součtu kvadrátů pro jednotlivá zařízení

\[I_{\mu} = \sqrt{\sum_{i=1}^{n} I_{\mu i}^2} \quad (27) \]

Pokud se vyskytují u těchto střídačů netypické harmonické proudy řádu \(\mu < 11 \), pak se tyto sčítávají aritmeticky.

Jsou-li překročeny přípustné hodnoty harmonických proudů (nebo přípustné proudy meziharmonických), pak jsou zapotřebí podrobnější posouzení. Přítom je třeba mít na paměti, že hodnoty přípustných harmonických proudů jsou voleny tak, aby platily i při vyšších frekvencích pro induktivní impedanci sítě, tj. např. pro čistě venkovní sítě. V sítích s významným podílem kabelů je ale síťová impedance v mnoha případech nižší, takže mohou být přípustné tyto proudy.

\[\sum_{\nu} = \mu = \sum_{i} I_{\nu i}^2 = \sum_{i} I_{\mu i}^2 \quad (26) \]

Pro \(\nu_{\mu} \), který v zásadě nemá nové, ale pro hodnoty \(\mu > 11 \) také obsahuje celočíselné hodnoty, je proud rovný odmocnině ze součtu kvadrátů pro jednotlivá zařízení

\[I_{\nu_{\mu}} = \sqrt{\sum_{i=1}^{n} I_{\nu_{\mu i}}^2} \quad (27) \]

Pokud se vyskytují u těchto střídačů netypické harmonické proudy řádu \(\mu < 11 \), pak se tyto sčítají aritmeticky.

Je-li v síti několik předávacích míst, musí být při posuzování poměrů v jednom předávacím místě brány v úvahu též ostatní předávací místa. Podle toho jsou poměry v síti vn přípustné, pokud v každém společném napájecím bodě napětí 0,2 %.

\[I_{\nu_{\mu}} = I_{\nu_{\mu}} \cdot S_{\nu} \cdot S_{\lambda} / S_{\nu} \quad (28) \]

kde \(S_{\nu} \) je součet napájecích zdánlivých výkonů všech zařízení v daném společném napájecím bodě a \(S_{\nu} \) je celkový výkon pro který je síť navržena.

Pokud podle tohoto výpočtu dojde k překročení přípustných harmonických proudů, pak v zásadě připojení není možné, pokud podrobnější výpočet neprokáže, že přípustné hladiny harmonických napětí v síti nejsou překročeny.

Pro jiná síťová napětí, než jaká jsou udána v TAB. 2, lze přepočítat vztazné harmonické proudy z hodnot v této tabulce (nepřímo úměrně k napětí). Pokud jsou překročeny přípustné proudy harmonických, pak je zapotřebí provést podrobnější výpočet harmonických (viz část 16 - Vysvětlovky).

11.2.3 VÝROBNÝ V SÍTI 110 KV

Pro tyto sítě udává následující tabulka celkově dovolené proudy harmonických pro zařízení připojená do jedné transformovny nebo do jednoho vedení 110 kV. Tyto hodnoty převzaté z [18] se vztahují ke zkratovému výkonu v předávacím místě výrobný.

TAB. 6

<table>
<thead>
<tr>
<th>Řád (\nu, \mu)</th>
<th>Přípustný vztazný proud harmonických (i_{\nu, \mu}) v A/GVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2,6</td>
</tr>
<tr>
<td>7</td>
<td>3,75</td>
</tr>
<tr>
<td>11</td>
<td>2,4</td>
</tr>
<tr>
<td>13</td>
<td>1,6</td>
</tr>
<tr>
<td>17</td>
<td>0,92</td>
</tr>
</tbody>
</table>
Příloha 4 PPLDS: PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PLDS

<table>
<thead>
<tr>
<th>μ</th>
<th>I_v,zul</th>
<th>(S_kV \cdot S_A \cdot S_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>> 25 nebo sudé</td>
<td>5,25 /(ν)</td>
<td></td>
</tr>
<tr>
<td>(μ < 40)</td>
<td>5,25 / (μ)</td>
<td></td>
</tr>
<tr>
<td>(μ > 40^6)</td>
<td>16 / (μ)</td>
<td></td>
</tr>
</tbody>
</table>

Pozn.: Pro harmonické řádu násobku tří se mohou vzít za základ hodnoty pro nejbližší vyšší řád

Přípustné proudy harmonických jednoho výrobního zařízení se získají pak pro harmonické do řádu 13 takto:

\[
I_{v,zul} = i_{v,μ,zul} \cdot S_{kV} \cdot \frac{S_A}{S_0}
\] \((29) \)

pro harmonické řádu vyšších než 13 a pro meziharmonické:

\[
I_{v,μ,zul} = i_{v,μ,zul} \cdot S_{kV} \cdot \frac{\sqrt{S_A}}{S_0}
\] \((30) \)

kde

- \(I_{v,μ,zul} \) přípustný proud harmonické výrobního zařízení
- \(i_{v,μ,zul} \) přípustný vztázný proud harmonické podle TAB. 6
- \(S_{kV} \) zkratový výkon v připojném bodě
- \(S_A \) připojný výkon výrobního zařízení
- \(S_0 \) referenční výkon.

Proudové harmonických a meziharmonických řádů vyšších než 13 se nemusí respektovat, když je výkon největšího dodávajícího menší než 1/100 zkratového výkonu sítě v připojném bodě.

Je-li výrobě zařízení připojeno k řízení filtrace, se připojí výkonu harmonického transformování, dosazuje se za referenční výkon \(S_0 \) těsného výkonu tohoto řízení. Při připojení výrobního zařízení přímo nebo přes zákazníkovo řízení k transformování se za \(S_0 \) dosazuje maximálně k transformování připojitému výroběním výkon).

Dodržení přípustných proudů zpětných vlivů podle rovnic (27) a (28) lze prokázat měřením celkového proudu v předávacím místě nebo výpočtem z proudů připojených jednotlivých zařízení.

Měření proudové harmonických a meziharmonických se musí provádět podle ČSN EN 61000-4-7 ed.2.

Proudové harmonických, přiváděné zkratovaným napětím sítě do výrobního zařízení (např. do obvodů filtrace), se výroběním zařízení nepřipočítávají.

11.3 OVLIVNĚNÍ ZAŘÍZENÍ HDO

Zařízení hromadného dálkového ovládání (HDO) jsou obvykle provozována s frekvencemi v rozmezí 183,3 až 283,3 Hz. Místně použitou frekvenci HDO je zapotřebí zjistit u PDS. Vysílací úroveň je obvykle 1,6 % až 2,5 % \(U_n \).

Ovlivnění zařízení HDO způsobují převážně výrobné a zařízení pro kompenzací účinku (KZ).

\(^6 \) Celociiselně nebo necelociiselně v pásmu 200 Hz
Výroby případně KZ připojené do přípojnice do níž se vysílá signál HDO ovlivňují přidavným zatížením vysílače HDO, které plyne z:
- vlastního zařízení výroby
- zvýšeného zatížením sítě, které je v důsledku výroby k sítii připojeno.

V těchto případech se posuzuje vliv výroby na zatížení příslušného vysílače HDO. Vychází se z informace o jeho zatížení, kterou poskytuje PDS. Pokud je toto blízké maximu, je připojení bez opatření nepřípustné. Pokud tomu tak není, je přípustné následující zvýšení zatížení vysílače:
- do 5A u vysílače do 110 kV
- do 2A u vysílače do vn.

Výroby (případně KZ) připojoané k sítii mimo přípojnicí, do níž se vysílá signál HDO smí způsobit snížení úrovně signálu HDO maximálně o 5% za předpokladu, že i po tomto snížení bude dodržena minimální přípustná úroveň signálu HDO určená týdenním měřením. Tato úroveň musí být zaručena i při mimořádných zapojeních sítí.

Po uvedení výroby do provozu pláně jeho provozovatel PDS výsledky měření impedance výroby na frekvenci HDO. (viz část 6 příhody 3)

Bez posouzení je možné připojit k síti výroby, nepřesáhne-li jejich výkon v přípojném bodu a výkon v celé síťové oblasti (včetně výroben již připojených) hodnoty uvedené v TAB.7.
Poznámka:
- Celkovým výkonem výroben v síťové oblasti se rozumí jejich výkon v uzlové oblasti 110 kV, vn, případně v síti nn.

Výrobní zařízení, která mají z hlediska impedancí na frekvenci HDO charakter točivých strojů (větrné výroby, kogenerace, turbogenerátory atp.) připojené k síťm vn PLDS, musí být od instalovaného výkonu 1MW výše paušálně vybavena hradícím členem. Výjimka je možná pouze na základě výpočtu zpracovaného v připojovací studii a následného měření jejich vlivu na HDO.

<table>
<thead>
<tr>
<th>Napěťová úroveň [kV]</th>
<th>Celkový výkon výrobních zařízení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V přípojném bodu</td>
</tr>
<tr>
<td>0,4</td>
<td>5 kVA</td>
</tr>
<tr>
<td>VN</td>
<td>500 kVA</td>
</tr>
<tr>
<td>110</td>
<td>5 MVA</td>
</tr>
</tbody>
</table>

Výpočet zařízení pro připojení připojovací studie a následného měření jejich vlivu na HDO.
12 UVEDENÍ VÝROBNY DO PROVOZU A PROVOZOVÁNÍ

12.1 PRVNÍ PARALELNÍ PŘIPOJENÍ VÝROBNY K SÍTI

První paralelní připojení výrobně k síti je možné provést pouze na základě souhlasu PLDS.

Výrobce podává žádost o první paralelní připojení výrobně k síti u PLDS (dále jen žádost).

Součástí žádosti výrobce o první paralelní připojení výrobně k síti je:

• potvrzení odborné firmy realizující výstavbu výrobně, že vlastní výrobna je provedena, v souladu s podmínkami stanovenými uzavřenou smlouvou o připojení podle předpisů, norem a zásad uvedených v části 3, stejně jako podle PPLDS a této přílohy,

• PLDS odsouhlasená projektová dokumentace aktualizovaná podle skutečného stavu provedení výrobně v jednom vyhotovení podle části 4.5 přílohy č. 4 PPLDS,

• zpráva o výchozí revizi elektrického zařízení výrobně elektriny a případné dalšího elektrického zařízení nově uváděného do provozu, které souvisí s uváděnou výrobnou do provozu, bez kterého nelze provést připojení výrobně k síti PLDS a

• protokol o nastavení ochran, pokud není součástí zprávy o výchozí revizi,

• místní provozní předpisy.

Na základě žádosti včetně předložených podkladů a po prověření jejich úplnosti, proveďte PLDS ve lhůtě do 30 kalendářních dnů ote dne, kdy mu byla úplná žádost výrobce včetně všech podkladů doručená a výrobce splnil podmínky sjednané ve smlouvě o připojení, za nezbytné součinnosti zástupce výrobně první paralelní připojení výrobně k síti. PLDS rozhodne, zda první paralelní připojení výrobně k síti proběhne za přítomnosti jeho zástupce nebo zda ho provede jím pověřená odborná firma sama bez přítomnosti zástupce PLDS. Před prvním paralelním připojením výrobně k síti je zapotřebí:

• provést prohlídku zařízení,

• provést porovnání vybudovaného zařízení s projektovaným,

• zkontrolovat přístupnost a funkce spínacího místa v předávacím místě a

• zkontrolovat provedení měřicího a účtovacího zařízení podle smluvních a technických požadavků, pokud je již instalováno, případně zkontrolovat provedení přípravy pro instalaci měřicího a účtovacího zařízení podle smluvních a technických požadavků, pokud ještě instalováno není.

Dále je také při prvním paralelním připojení k síti zapotřebí:

• uskutečnit funkční zkoušky ochran podle části 8., O ochrany se ověřují buď za skutečných podmínek, nebo simulací pomocí odpovídajících zkušebních přístrojů,

• odkouřit náběh ochran a dodržení udaných vypínacích časů pro následující provozní podmínky:

• třífázový výpadek sítě (u sítě nn i jednofázový),

• OZ (u zdrojů připojených do sítí vn a 110 kV),

• odchylky frekvence (simulace zkušebními zařízeními)

• u elektréměrů pro dodávku i odobr, pokud je již instalován, provést kontrolu správnosti chodu,

• pokud je výrobně vybavena dálkovým ovládáním, signalizací, regulací a měřením ověřit jejich funkce z příslušného rozhraní,

• zkontrolovat podmínky pro připojení podle části 10
- zkontrolovat, zda kompenzační zařízení je připojováno a odpojováno s generátem a zda u regulačních zařízení odpovídá regulace výkonovému rozsahu.

Doporučuje se body zkoušek provádět podle seznamu.

Uvádění do provozu, se dokumentuje protokolem o splnění technických podmínek pro uvedení výrobny do provozu (viz 19.3).

Ochrany mohou být PLDS plombovány.

Pokud není při prvním paralelním připojení možné provést měření a posouzení všech provozních stavů, může PLDS rozhodnout o potřebě ověřovacího provozu a délce jeho trvání. Ověřovací provoz neznamená ztrátu nároku na podporu výroby elektriny z OZE.

12.2 ZKUŠĚBNÍ PROVOZ

Na základě požadavku výrobce povolí PLDS zkušební provoz výrobny. Součástí žádosti o povolení zkušebního provozu a kontroly zkušenky při zahájení zkušebního provozu jsou totožné, jako v části 12.1. Zkušební provoz bude časově omezen a bude povolen pouze za účelem uvedení výrobny do provozu, provedení potřebných zkoušek a měření a může, na základě rozhodnutí PLDS, probíhat bez instalovaného fakturačního měření dodávky do LDS.

12.3 TRVALÝ PROVOZ VÝROBNY, UZAVÍRENÍ PŘÍSLUŠNÝCH SMLUV

Další navazující smlouvy (výkup vyrobené elektřiny, systémové služby atd.) budou uzavřeny až po uzavírání smlouvy o připojení zařízení výrobce k LDS. Návrhy těchto navazujících smluv zašle PLDS výrobcům do 30ti dnů po prvním paralelním připojení výrobny k distribuční sítě, je-li výrobce držitelem platné licence na výrobu elektriny. Protokol o splnění technických podmínek pro uvedení výrobny do provozu se souhlasnými výsledky uvedených kontrol provedený podle části 12.1 je vyžadován při uzavírání těchto smluv pouze tehdy, pokud nebyl podkladem pro uzavírání smlouvy o připojení.

V případě, že PLDS rozhodl, že se první paralelní připojení výrobny k síti uskuteční bez přítomnosti jeho zástupce, má PLDS možnost sám provést dodatečné kontroly a zkoušky uvedené v části 12.1, a to nejpozději ve lhůtě 90 kalendářních dnů od data prvního paralelního připojení výrobny k síti, které je dokumentováno protokolem prováděným podle části 12.1.

V případě, že PLDS při této dodatečné kontrole shledá nesoulad aktuálního stavu výrobny se skutečnostmi uvedenými v protokolu, stanoví výrobci příměřenou lhůtu pro odstranění zjištěných nesouladů a závad. V případě shledání vážných závod nebo nesouladů ohrožujících bezpečný a spolehlivý provoz LDS, může PLDS provést přechodné odpojení výrobny od LDS do doby, než dojde k odstranění shledaných závodů a nesouladů. Pokud k odstranění zjištěných nesouladů a závod nejde dove v stanovené lhůtě a ani v PLDS stanoveném náhradním termínu, může PLDS v souladu s měřeně sjednanými podmínkami uzavírat smlouvu o připojení úkonět.

Zařízení potřebná pro paralelní provoz většiny výrobny se síti PLDS musí výrobce udržovat neustále v bezvadném technickém stavu. Spínače, ochrany a ostatní vybavení pro dálkové řízení podle části 5.1 musí být v pravidelných lhůtách (minimálně jednou za čtyři roky) funkčně přezkoušeny odbornými pracovníky provozovatele výrobny, nebo odborné firmy. Pokud přezkoušení zajišťuje provozovatel výrobny vlastními pracovníky nebo pomocí odborné firmy, může PLDS požadovat u zkoušek přítomnost svého zástupce. Výsledky je zapotřebí dokumentovat zkušebním protokolem a na požádání předložit PLDS.

Tento protokol má chronologicky doložit předepsané zkoušky a být uložen u zařízení vlastní výrobny. Slouží též jako důkaz řádného vedení provozu.

PLDS může v případě potřeby požadovat přezkoušení ochran pro oddělení od sítě, ochran vazebního spínače a ostatního vybavení pro dálkové řízení podle části 5.1. Pokud to vyžaduje provoz sítě, může PLDS zadat změněné nastavení pro ochrany.

Výrobce je povinen z nutných technických důvodů na žádost PLDS odpojit vlastní výrobou od síti.
PLDS je při nebezpečí nebo porušení oprávněn k okamžitému odpojení výrobně od sítě. Odpojování výroben k provádění provozně nutných činností v síti jsou zpravidla jejich provozovatelé oznamována.

Pověřeným pracovníkům PLDS je zapotřebí umožnit v dohodě s výrobcem přístup ke spínacímu zařízení a ochranám podle částí 7 a 8.

Pokud je ke spínání potřebný souhlas, pak uzavře PLDS s provozovatelem výrobně odpovídající (dohodu) smlouvu o provozování, ve které jsou vyjmenovány osoby oprávněné ke spínání. Do této dohody je zapotřebí zahrnout i ujednání o poruchové signalizaci, signalizaci odpojení a časech připojování zařízení vlastní výroby.

PLDS vyrozumí provozovateli výrobně o podstatných změnách ve své síti, které mohou ovlivnit paralelní provoz, jako je např. zvýšení zkratového výkonu.

Provozovatel výrobně musí s dostatečným předstihem projednat s PLDS zamýšlené změny zařízení, které mohou mít vliv na paralelní provoz se sítí, jako např. zvýšení nebo snížení výkonu výroby, výměnu ochran, změny u kompenzačního zařízení.
13 PŘÍKLADY PŘIPOJENÍ VÝROBEN

Příklad 1 Paralelně provozovaná výrobna v síti nn bez možnosti ostrovního provozu

síť nn 400/230 V
trvale přístupné špinác místo podle části 5 (může být vypuštěno, pokud je domovní skříň pracovníkům PLDS neomezeně přístupná)

domovní připojková skříň

400/230 V

rozváděč

spínač podle části 7
ochrany podle části 8

generátor

Příklad 1a Paralelně provozovaná výrobna v síti nn bez možnosti ostrovního provozu

Společné připojení, možnost vykázat výrobu a částečně ji spotřebovat. Průběhové měření.

síť nn 400/230 V
trvale přístupné špinác místo podle části 5 (může být vypuštěno, pokud je domovní skříň pracovníkům PLDS neomezeně přístupná)

domovní připojková skříň

měření odběr

měření dodávka - odběr

400/230 V

rozváděč

vlastní spotřeba
spínač podle části 7
ochrany podle části 8

generátor
Příklad 1b Paralelně provozovaná výroba v síti nn bez možnosti ostrovního provozu
Celá výroba bez vlastní spotřeby dodaná do LDS
Rozšíření stávajícího odběru o výrobu

Příklad 2 Paralelně provozovaná výroba v síti nn s možností ostrovního provozu
Příklad 3 Jedna vlastní výroba v paralelním provozu se síťí bez možnosti ostrovního provozu

- síť vn
- spínací místo podle části 5
- transformátor odběratele
- sběrnice nn
- spínací přístroj (vazební vypínač)
- odběry
- podle části 7 s ochranami generátoru podle části 8
- generátor

G
3~
Příklad 4 Výroba s více generátory v paralelním provozu se sítí bez možnosti ostrovního provozu.

síť vn

spínač místo podle části 5

transformátor odběratele

sběrnice nn

spínač přístroj (vazební vypínač) podle části 7 s ochranami generátoru podle části 8

další zdroje

generátor

G 3~

G 3~
Příklad 5 Vlastní výrobna v paralelním provozu se síťí s možností ostrovního provozu

- spínací místo podle části 5
- transformátor odběratele
- spínací přístroj (vazební vypínač) podle části 7 se síťovými ochranami podle části 8
- sběrnice nn
- odběry
- vypínač generátoru se - zkratovou ochranou - ochranou proti přetížení
- generátor

G 3~
Příklad 6 Výroba s více generátory v paralelním provozu se sítí s možností ostrovního provozu

síť vn

spínací místo podle části 5

spínací přístroj (vazební vypínač)
podle části 7 se síťovými ochranami podle části 8

transformátor výroby

sběrnice nn

spínací přístroj (vazební vypínač)
podle části 7 s ochranami generátoru podle části 8

G 3~

generátor
Příklad 7 Výrobní s více generátory v paralelním provozu se sběrnicí vn a decentralizovanými vypínači s ochranami

[Diagram]

síť vn

spínač místo podle části 5

síť vn

další zdroje

blokový transformátor

spínač přístroj (vazební vypínač)

podle části 7 a ochranami generátoru

podle části 8

generátor

G 3~

G 3~
Příklad 8 Výroba s více generátory v paralelním provozu se sítí bez možnosti ostrovního provozu, se sběrnicí vn a centrálním vypínačem s ochranami

![Diagram]

- síť vn
- spínač místo podle části 5
- spínač přístroj (vazební vypínač) podle části 7 a síťovými ochranami podle části 8
- sběrnice vn
- blokový transformátor
- další zdroje
- vypínač generátoru se
 - zkratovou ochranou
 - ochranou proti přetížení
- generátor
Příklad 9 Připojení výrobku jednoduchým
T odbočením k vedení 110 kV

Příklad 10 Připojení výrobku dvojitým
T odbočením k vedení 110 kV

M - fakturační měření
1) Blokování propojení obou systémů vedení

- Ovládání a signalizace PLDS
 Signalizace zákazník

- Ovládání a signalizace zákazníka
 Signalizace a vypínací povel PLDS
Příklad 11 Připojení výrobně zasmyčkováním do vedení 110 kV LDS

Příklad 12 Připojení výrobně do pole vedení 110 kV v rozvodně LDS
14 DODATEK

Vysvětlivky

Vysvětlivky k části:

3 Všeobecně

Informace ve vysvětlivkách vycházejí z dosavadní praxe a zkušeností PDS.

4 Přihlašovací řízení

U vlastních výroben s několika generátorů je zapotřebí udádat data pro každý jednotlivý pohon i generátor (podrobnosti jsou v části 3.7 PPLDS). Souhrnné údaje u zařízení s více generátorů nepostačují pro závěrečné posouzení nárazových proudů, časového odstupňování, harmonických a flikru (viz dotazník pro posouzení možností připojení).

5 Připojení k síti

Aby bylo zajištěno dostatečné dimenzování zařízení, musí být v každém případě proveden výpočet zkratových poměrů v předávacím místě. Zkratová odolnost zařízení musí být vyšší, nejvýše rovnější největšímu vypočtenému celkovému zkratovému proudu.

Podle síťových poměrů i druhu a velikosti zařízení vlastní výrobní proud musí délečí spínací místo vykazovat dostatečnou vypínací schopnost (odpínač nebo vypínač).

7 Spínací zařízení

Při dimenzování spínacího zařízení je zapotřebí brát ohled na to, že zkrat je napájen jak ze síť PLDS, tak z vlastní výroby. Celková výše zkratového proudu závisí tedy jak na příspěvku ze síť PLDS, tak z vlastní výroby. U větších generátorů je všeobecně požadován výkonový vypínač.

Spínací ke spojení vlastní výroby se síť PLDS slouží jako trvale přístupné spínací místo (viz část 5). Uspořádání spínacích je závislé na zapojení, vlastnických i provozních poměrech v předávací stanici. Bližší stanoví PLDS ve smlouvě.

U zařízení, která nejsou určena pro ostrovní provoz, mohou být použity generátorové vypínací ke spojování a synchronizaci, stejně jako k vypínání ochranami, tedy jako délečí vypínací k síti.

U zařízení schopného ostrovního provozu slouží synchronizační vypínací mezi spínacím místem podle části 5 a zařízením výrobní k vypínání, ke kterému může dojít činnost ochran při jevech vyvolaných v síti PLDS. Funkce vazebního a synchronizačního vypínací je zapotřebí specifikovat jako součást smlouvy o způsobu provozu.

Výpadek pomocného napětí pro ochrany a spínací přístroje musí vést automaticky k vypnutí vlastní výrobní, protože jinak při poruchách v síti PLDS nedojde k působení ochran a vypnutí.

8 Ochrany

Ochrané v délečím bodě mají zabránit nežádoucímu napájení (s nepřípustným napětím nebo frekvencí) části sítě oddělené od ostatní napájecí sítě z vlastní výroby, stejně jako napájení poruch v této síti.

U třífázových generátorů připojených na třífázovou síť vede nerovnováha mezi výrobou a spotřebou činného výkonu ke změně otáček a tím frekvence, zatímco nerovnováha mezi vyráběnou a spotřebovanou jalovou energií je spojena se zmírnou napětí. Proto musí u těchto generátorů být sledována jak frekvence, tak i napětí.

Kontrola napětí je třeba třífázová, aby bylo možné s jistotou rozpoznat i jednopólův pokles napětí.

Zpoždění vypínání podpěřovou a nadpěřovou ochranou musí být krátké, aby ani při rychlých změnách napětí nedošlo ke škodám na zařízení dalších odběratelů nebo na zařízení vlastní výroby. Při samobuzení asynchronního generátoru může svorkové napětí během několika period dosáhnout tak vysoké hodnoty, že nelze...
vyloučit poškození provozovaných zařízení. Časy zpoždění do 3 s udané v této příloze PPLDS je tedy možné použít jen ve výjimečných případech.

Generátory připojené přes střídače nereagují na nevyrovnovanou bilanci činného výkonu automaticky odpovídající změně frekvence. Proto u nich stačí podpěťová a nadpěťová ochrana. Oddělené kontrola frekvence jako ochrana pro oddělení není zařízení se střídači bezpodmíněně nutná; obecně postačuje integrované sledování frekvence v řízení střídače s rozběhovými hodnotami podle části 8.

Nezpožděným odpojením vlastního výrobku při OZ jsou chráněny synchronní generátory před zapnutím v protifázi po automatickém znovuzapnutí po beznapěťové přestávce. Také účinnost OZ je zajištěna pouze tehdy, když při beznapěťové pauze síť není napájená. Proto musí být součet vypínacího času ochrany a vlastního času spínací zvolek tak, aby beznapěťová pauza při OZ nebyla podstatně zkrácena.

Ochrany pro nezpožděné vypnutí při OZ (relé na skokovou změnu vektoru a výkonu, popř. směrová nadproudová ochrana) nejsou náhradou za požádané napěťové a frekvenční ochrany. Při jejich nastavení je zapotřebí brát v úvahu reakci na kolišení zařízení v zařízení vlastní výrobku a přechodně jevy v síti. U zařízení schopných ostrovního provozu je jejich hlavní funkční rozpoznat ostrovní provoz (s částí sítě PLDS), vypnout vazebné vypínání a tím zamezit pozdějšímu nesynchronnímu sepnutí ostrovní sítě a sítě PLDS. Vypínací časy těchto ochran je zapotřebí sladit s odpovídajícími časy napěťových a frekvenčních relé.

K vymezení části zařízení se zemním spojením může být požadovalo vybavení zemním směrovým relé. Tato relé mají být zapojena pouze na signál.

Ze smluvních důvodů nebo k zabránění přetížení zařízení mohou být požadovány ochrany pro omezení napájení do sítě. Nasazení odpovídajících ochran a jejich nastavení je zapotřebí odsouhlast s PLDS.

9 Kompenzace jalového výkonu

K zamezení vysokých ztrát činného výkonu je zapotřebí usilovat o účinek přibližně 1. V distribuční síti PLDS s vysokým podílem kabelů a s kondenzátory stávajících kompenzačních zařízení může celkový účinek ležet v kapacitní oblasti. Pak může být žádoucí zabránit, aby vlivem kompenzačního zařízení odběratele kapacitní výkon v síti dále rostl. Proto může PLDS v jednotlivých případech, např. u malých synchronních generátorů, od požadavku na kompenzační zařízení upustit. Je rovněž třeba vyšetřit, zda požadovat jednotlivou, skupinovou nebo centrální kompenzaci.

K zamezení nadbytečných ztrát ve vedení je zapotřebí usilovat o minimalizaci jalového výkonu - jinak vyjádřeno - při významné výkonu o účinek λ = cos φ přibližně 1. Protože pro tento požadavek je určující údaj jalového elektromotoru, neznámá případná významná odchylka účinku od 1 v době nízkého činného výkonu porušení této zásady.

Při využití kompenzačních kondenzátorů je zapotřebí si uvědomit, že v každé síti dochází při frekvenci vyšší než 50 Hz k paralelní rezonanci mezi rozptýlovou reakcí napájecího transformátoru a součtem všech síťových kapacit, při které zejména v době slabého zařízení může dojít ke zvýšení impedance síť. Připojením kompenzačních kondenzátorů se tato rezonanční frekvence posune k nižším kmitočtům. To může v některých síťích vn vést ke zvýšení napětí harmonických v síti. K zabránění szer kondenzátoru zahradit předřazeným indukčnosti (nelze vždy dodatečně, protože se zvýší napětí na kondenzátoroch). Vzhledem k možnému sacímu účinku na místní použité frekvence HDO je nutný souhlas příslušného PDS.

Při vypínání může zůstat v kondenzátoroch náboj, který bez výbíjecích odporů může způsobit vyšší dotykové napětí, než je přípustné podle [18]. Při opětovném zapnutí ještě nabitého kondenzátoru může též dojít k jeho poškození. Proto jsou zejména u vyšších výkonů potřebné výbíjecí odpory, případně lze využívat k vybíjení vhodně zapojené přístrojové transformátoru napětí.

- Potřeba jalového výkonu asynchronních generátorů

Potřebný jalový výkon asynchronního generátoru je cca 60 % dodávaného zdánlivého výkonu. Nemá-li být tento jalový výkon dodávan ze sítě PLDS, je třeba pro kompenzaci připojit paralelně ke generátoru odpovídající kondenzátor. Protože asynchronní generátor má být připojen k síti pouze v beznapěťovém stavu, nesmějí být příslušné kondenzátory připojeny před připojením generátoru. K tomu může být zapínací povel odvozen např. od
Pomocného kontaktu vazebního vypínače. Při vypnutí generátoru je zapotřebí pro ochranu před samobuzením generátoru a ochranu před zpětným napětím kondenzátorů odpojit.

- **Potřeba jalového výkonu synchronních generátorů**

 U synchronních generátorů může být cos ϕ nastaven buzením. Podle druhu a velikosti výkonu pohonu je buď postačující konstantní buzení, nebo je zapotřebí regulátor na napětí nebo cos ϕ.

- **Potřeba jalového výkonu u střídačů**

 Vlastní výrobny provozované se střídači lze připojit jako synchronní generátor. Proto pro kompenzaci těchto střídačů platí stejné podmínky jako u asynchronních generátorů.

 Výrobny se střídačů s vlastní synchronizací mají nepatrnou spotřebu jalového výkonu, takže kompenzace jejího výkonu se u nich obecně nepožaduje.

10 **Podmínky pro připojení**

Po vypnutí ochranou smí být vlastní výroba zapnutá teprve tehdy, když je odstraněna porucha, která vedla k vypnutí. Po pracích na zařízení výrobny a síťovém přívodu je zapotřebí především přezkouset správný sled fází.

Po vypnutí vlastní výroby pracovníci PLDS (viz část 13) je opětovné zapnutí zapotřebí dohodnout s příslušným pracovištěm PLDS.

Zpoždění před opětovným připojením generátoru a odstupňování časů při připojování více generátorů musí být tak velká, aby byly jistě ukončeny všechny regulační a přechodové děje (cca 5 s).

Proud při motorickém rozbohu je u asynchronních strojů několikanásobkem jmenovitého proudu. Bezprostředně pozorovatelné účinky jsou např.:

- kolísání jasu (flikr) žárovek a zářivek
- ovlivnění zařízení dálkové signalizace a ovládání, zařízení výpočetní techniky, ochranných a měřicích zařízení, elektroakustických přístrojů a televizorů
- kývání momentu u strojů
- přidavné oteplení kondenzátorů, motorů, filtračních obvodů, hradicích tlumivek, transformátorů
- vadná činnost přijímačů HDO a elektronického řízení.

11 **Zpětné vlivy**

Zpětné vlivy na LDS se u vlastních výroben projevují především jako změny napětí a harmonické.
a) Změny napětí

Maximální přípustné změny napětí jsou závislé na četnosti jejich výskytu (křivka flikru). Podrobnosti jsou v [8, 10]. Měřítkem a kritériem pro posuzování je míra vjemu flikru \(P_b \) (A). Ten se zjišťuje buď měřením skutečného zařízení ve společném napájecím bodu, nebo předběžnými výpočty.

\(P_b \) je závislý na:
- zkratovém výkonu \(S_{kV} \)
- úhlu \(\psi_{kV} \) zkratové impedance
- jmenovitém výkonu generátoru
- činiteli flikru zařízení \(c \)
- a při podrobnějším vyšetřování i na jalovém výkonu zařízení, vyjadřeném fázovým úhlem \(\phi \).

Činitel flikru zařízení \(c \) charakterizuje spolu s fázovým úhlem i specifické schopnosti příslušného zařízení produkovat flikr. Oby dany měřený úhel buď výrobce zařízení, nebo nezávislý institut a mají význam především u větších elektráren. Činitel flikru zařízení s generátorem může být stanoven měřením flikru za reálných provozních podmínek, ze kterých jsou vyloučeny spínací pochody. Je účelné takové měření provádět v síti s odporové-induktivní zkratovou impedancí, ve které vlastní výroba nevyvolává větší změny napětí než 3 až 5 %, jak se to doporučuje pro měření spínacích vlivů [13,14].

Činitel flikru c získáme z měření rušivého činitelů flikru \(P_b \) s uvažováním výkonu generátoru \(S_{rG} \) a fázového úhlu generátorového proudu.

\[
\begin{align*}
\phi_i &= \arctan \frac{\Delta Q}{\Delta P}, \\
\end{align*}
\]

kde:
- \(\Delta Q > 0 \) činný výkon vyvolalý vlastní výrobnou
- \(\Delta Q < 0 \) jalový výkon vyvolaný vlastní výrobnou se znaménkem, definovaným následujícím způsobem:
- \(\Delta Q = 0 \) když se vlastní výroba zachází jako induktivní odběratel, tj. např. asynchronní generátor, nebo podbuzený synchronní generátor.
- \(\Delta Q > 0 \) když se vlastní výroba zachází jako kapacitní odběratel, tj. např. přebuzený synchronní generátor.

Absolutní hodnota součinitele flikru c a fázový úhel \(\phi \), komplexní veličiny c popisují účinek flikru vlastní výrobnou.

S přihlédnutím ke zkratovému výkonu \(S_{kV} \) a úhlu zkratové impedance \(\psi_{kV} \) v předpokládaném společném napájecím bodu se vypočte činitel dlouhodobého rušení flikrem, způsobený vlastní výrobnou.
Příloha 4 PPLDS: PRAVIDLA PRO PARALELNÍ PROVOZ ZDROJŮ SE SÍTÍ PLDS

\[P_{lt} = \left[c \cdot \frac{S_{fA}}{S_{kV}} \cos (\psi_{kV} - \varphi_l) \right] . \] (33)

Tento vztah poskytuje menší, ale přesnější hodnoty činitelů flikru, než odhad podle rovnice (16) v části 11.

Kdyby v rozsahu úhlu \(\psi_{kV} - \varphi_l = 90^\circ \) klesl \(\cos(\psi_{kV} - \varphi_l) \) pod hodnotu 0.1, pak by mohly vyjít nereálně nízké hodnoty flikru. Pokud není úhel síťové impedance příliš velký (\(\psi_{kV} < 60^\circ \)), pak lze podle okolností vliv úhlu \(\varphi_l \) zanedbat.

Pokud je hodnota činitelu flikru \(c \) nějakého zařízení pod 20, pak není zapotřebí připojení k flikru, když podle okolností vliv úhlu \(\varphi_l \) nebo příliš velké síťové impedance je složitě přežkušovat, protože podmínky připojení podle části 10 představují přísnější kritéria.

Činitel flikru zařízení \(c \) je závislý především na stejnoměrnosti chodu daného zařízení, na kterou opět mají vliv další parametry:

- turbinami poháněné generátory (např. vodními, parními nebo plynovými) mají obecně hodnoty \(c \) menší než 20 a nejsou proto, pokud jde o flikr kritické
- u pístových motorů má na hodnotu \(c \) vliv počet válců
- čím větší je rotující hmota, tím menší je činitel flikru
- u fotočlánkových zařízení se nerozlišuje k dispozici naměřené hodnoty \(c \), žádné kritické působení flikru se však neočekává.

Při posuzování flikru bývají kritické větěné elektrárny, protože podle zkušeností jsou jejich činitelů flikru \(c \) až 40.

Pro většinu elektráren platí:

- čím je větší počet rotujících listů, tím menší je činitel flikru \(c \)
- u zařízení se střídají je tendence k nižším hodnotám \(c \), tím méně se flikr kritické
- u zařízení, která sestávají z více generátorů, dochází k určité "kompensaci" flikru jednotlivých generátorů.

Pokud pracuje více různých generátorů do stejného společného napájecího bodu, pak je zapotřebí pro toto zařízení použít výsledný činitel flikru podle následujícího vztahu:

\[c_{res} = \sqrt{\frac{\sum (c_i \cdot S_{Gi})^2}{\sum S_{Gi}}} . \] (34)

Pokud zařízení sestává ze stejných generátorů, pak se přecházející rovnice zjednoduší na:

\[c_{res} = \frac{c}{\sqrt{n}} . \] (35)

Odtud je zřejmé, že u zařízení, která sestávají z více generátorů, dochází k určité "kompensaci" flikru jednotlivých generátorů.

b) Harmonické

- výrobní v síti nn

Pokud je v zařízení se střídají použit šestipulzní usměrňovač s induktivním vyhlašováním bez něždelných opatření ke snížení vyšších harmonických (jednoduché trojčlánkové můstkové zapojení), přípustné velikosti harmonických nebudou překročeny, pokud je splněna následující podmínka:

\[\frac{S_{iA}}{S_{kV}} < \frac{1}{120} . \] (36)

V sítích s nízkým až průměrným zařízením harmonickými není zapotřebí očekávat při provozu vlastních výrob v rušivá napětí harmonických, pokud součet jmenovitých výkonů těchto zařízení \(S_{iA} \) splňuje následující podmínku:
Pokud jde o zemnění uzlu v třífázovém systému, je zapotřebí si uvědomit, že proudy třetí harmonické a jejich násobků mají ve všech fázových vodičích stejný směr (nulový systém) a tudíž se v uzlu sčítají. Ve středním vodiči tekou proto trojnásobky těchto harmonických proudů. Při izolovaném uzlu se třetí harmonická v proudu nemůže vyvinout.

Pokud je střední vodič vyveden a připojen pro umožnění ostrovního provozu, mohou být použita např. tato opatření:
- vyšší průřez vodiče pro připojení uzlu
- zabudování tlumivky do uzlu (která nesmí ovlivnit činnost zkratových ochran při jednopólových zkratech)
- automatické přerušení spojení uzlu se síťí při paralelním provozu klidovým kontaktem vazebního spínače.

- **výrobní v síťí vn**

Zkratové výkony používané k výpočtu přípustných proudů harmonických v síťích vn mohou ležet v rozsahu 20 až 500 MVA. Je zapotřebí dávat pozor, aby se nepoužívala jmenovitá zkratová odolnost zařízení vn, ale skutečný zkratový výkon ve společném napájecím bodě. Očekávané proudy vyšších harmonických mohou být zjištěny např. v rámci měření slučitelnosti se síťí.

Napětí harmonických 5. řádu vyvolané vlastním zdrojem mohou být maximálně 0,2 % U_n a pro ostatní harmonické v TAB. 2 nesmějí být větší než 0,1 % U_n.

Pokud jsou proudy harmonických zařízení nižší než přípustné proudy, pak je zajištěno, že jimi vyvolaná napětí harmonických v síťí nejsou větší, než v předchozím uvedené hodnoty. To platí za předpokladu induktivní impedance sítě, která znamená, že u žádné z harmonických uvedených harmonických v síti nejsou výše uvedené proudy harmonických v síti méně než 0,1 % U_n (viz [8]). Protože mnoho sítí v mohou již pro harmonické poměrně nízkých řádů kapacitní impedancí, jsou výše uvedené přípustné hodnoty napětí harmonických 0,1 % U_n dosaženy teprve při vyšších proudech, než vypočtených podle TAB. 2.

Pouze tehdy, když jsou vypočtená napětí harmonických vyšší než výše uvedené meze, přicházejí mj. v úvahu následující opatření:
- zabudování filtrů harmonických
- připojení v místě s nižší impedancí sítě (vyšším zkratovým výkonem).

Dále je zapotřebí doporučit a v jednotlivých případech přezkoumat, zda mají být použity u zařízení se střídači od cca 100 kVA (jmenovitý výkon) dvanáctipulzní a u zařízení nad 2 MVA (jmenovitý výkon) dvacetitřípulzní usměrňovače. Tím se snižují proudy harmonických a návazně i náklady na kompenzační zařízení. Údaje o proudech harmonických má dodávat výrobce zařízení.

U zařízení se střídači s modulací šifrkou pulsu ve frekvenčním rozsahu nad 1 kHz je zapotřebí předložit protokoly o analýze maximálních proudů harmonických při různých výkonech.

Harmonické vyšších frekvencí, tzn. v rozsahu nad 1 250 Hz, mohou vystupovat za určitých okolností, např. při slabé tlumených rezonancích části sítě, vyvolaných při komutacích. V těchto případech musí být přijata zvláštní opatření, popsaná blíže v [8].

Zpětné vlivy na zařízení HDO

Generátory a motory zatěžují napětí tónové frekvence subtransientní reaktancí a mohou tak rovněž vyvolat nepřípustné snížení hladiny signálu. I zde jsou podle okolností potřebné hradící člany nebo v mezních případech podpůrné vysílače HDO.

Z těchto důvodů může PLDS požadovat i dodatečně u kompenzačního zařízení zahrazení kondenzátorů nebo jiná technické opatření, která musí provozovatel vlastní výrobní zabudovat.
15 LITERATURA

[1] Zákon č. 458/2000 Sb. o podmínkách podnikání a o výkonu státní správy v energetických odvětvích (Energetický zákon) v platném znění
[2] Vyhláška ERÚ 51/2006 Sb o podmínkách připojení k elektrizační soustavě
[3] ČSN EN 50160 (33 0122): Charakteristiky napětí elektrické energie dodávané z veřejně distribučních sítí
[4] Richtlinie für den Parallelbetrieb von Eigenerzeugungsanlagen mit dem Niederspannungsnetz des Elektrizitätsversorgungsunternehmens (EVU) VDEW,
[8] PNE 33 3430-0: Výpočtové hodnocení zpětných vlivů odběratelů a zdrojů distribučních soustav
[9] PNE 33 3430-1: Parametry kvality elektrické energie - Část 1: Harmonické a mezharmónické
[15] PNE 33 3430-7: Charakteristiky napětí elektrické energie dodávané z veřejně distribučních sítí
[16] ČSN 33 3080: Kompenzace indukčního výkonu statickými kompenzátory
[18] ČSN 33 3201: Elektrické instalace nad AC 1 kV
[19] EEG- Erzeugungsanlagen am Hoch- und Höchstspannungsnetz, VDN 2004
[20] ČSN EN 50 438 Požadavky na paralelní připojení mikrogenerátorů s veřejnými distribučními sítěmi nízkého napětí
[22] Vyhláška ERÚ č. 541/2006 Sb. o Pravidlech trhu s elektrinou, zásadách tvorby cen za činnosti operátora trhu s elektrinou a provedení některých dalších ustanovení energetického zákona v platném znění
[23] ČSN EN 61000-3-2 Ed.2 (33 3432): Elektromagnetická kompatibilita (EMC) – Část 3 - 2: Meze pro emise harmonického proudu (zařízení se vstupním fázovým p proudem do 16 A včetně)
[24] ČSN EN 61000-3-12 (35 1720): Elektromagnetická kompatibilita (EMC) – Část 3-12: Meze harmonických proudu způsobených zařízením se vstupním fázovým p proudem >16 A a ≤75 A připojeným k veřejným sítím nízkého napětí
16 PŘÍKLADY VÝPOČTU

Posouzení připustnosti připojení vlastní výroby k distribuční síti vn.

Zadání úlohy

K veřejné síti 22 kV má být připojena větrná elektrárná s výkonem 440 kVA. Velikost výkonu vyžaduje připojení zvláštní trafostanicí 22/0.4 kV.

Připustnost připojení je zapotřebí přezkoušet s přihlédnutím k podmínkám připojení podle části 10 a zpětných vlivů podle části 11.

Údaje o síti
- zkratový výkon ve společném napájecím bodu \(S_{kV} = 100 \text{ MVA} \)
- fázový úhel zkratové impedance \(\psi_{kV} = 70^\circ \)

Údaje k vlastní výrobně
- synchronní generátor s meziobvodem a 12pulsním usměrňovačem
- jmenovitý napětí usměrňovače \(U_p = 400 \text{ V} \)
- jmenovitý výkon \(S_{0} = S_{rA} = 440 \text{ kVA} \)
- poměr maximálního zapínacího proudu ke jmenovitému \(k = 1 \)
- činitel flikru \(c = 30 \) při \(\varphi_f = 0^\circ \)
- proudy harmonických
 - relativní a absolutní hodnoty
 - na straně 400 V
 - \(I_{11} = 4.3 \% = 27.3 \text{ A} \)
 - \(I_{13} = 4.3 \% = 27.3 \text{ A} \)
 - \(I_{25} = 3.1 \% = 19.7 \text{ A} \)

Ověření připojitelnosti
- posouzení podmínek pro připojení

Přípojný výkon, připustný podle části 9 je:

\[
S_{rA\text{príp}} = \frac{2 \% \cdot S_{kV}}{k} = \frac{2 \cdot 100 \text{ 000 kVA}}{100} = 2000 \text{ kVA} \approx 440 \text{ kVA}
\]

Protože připojovaný výkon generátoru je menší než připustný výkon, je podmínka splněna, tj. při připojení zařízení se neočekává žádné rušení změnami napětí.

- Posouzení zpětných vlivů

Posouzení zpětných vlivů podle části 11.
- Pro orientační posouzení platí podmínka uvedená v části 10:

\[
\frac{S_{kV}}{S_{rA}} \geq 500
\]

V tomto případě platí

\[
\frac{100 \text{ MVA}}{440 \text{ kVA}} = 227 < 500
\]

Protože v předchozím uvedená podmínka není splněna, je nutný další výpočet.
- Ověření kritéria flikru
\(P_{lt} \leq c \cdot \frac{S_{lt}}{S_{kV}} \)

Odhad činitele dlouhodobého rušení flikrem
\[
P_{lt} \leq 30 \cdot \frac{440 \text{ kVA}}{100 \ 000 \text{ kVA}} = 0.132 \frac{440}{100} = P_{\text{up}} \]

Flikr vycházející ze zařízení při provozu zůstane pod přípustnou hodnotou.

- Ověření přípustnosti vystupujících proudů harmonických podle podmínky:

\[
P_{\text{přípustný proud harmonických}} = \text{vztažný proud harmonických} \cdot S_{kV} \]

Pro posouzení budou použity hodnoty příslušných vztažných proudů harmonických v TAB.2 v části 11. Společný napájecí bod pro připojení vlastního zdroje je sice na straně 400 V, přesto však budou použity hodnoty strany 400 V.

Posuzovací tabulka

<table>
<thead>
<tr>
<th>Řád harmonické</th>
<th>proudy harmonických</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vztažné (A/MVA) 400 V</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>23</td>
<td>0.2</td>
</tr>
<tr>
<td>25</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Pro proud 23. harmonické je přípustná mez překročena.

Před rozhodnutím o přípustnosti připojení vlastního zdroje je třeba vypočíst vyvolané napětí 23. harmonické (viz [7]).

Pokud po tomto výpočtu bude rovněž překročeno přípustné napětí pro tuto harmonickou, přicházejí v úvahu následující opatření:

- zabudování filtru pro 23. harmonickou
- připojení v místě s vyšším zkratovým výkonem, minimálně

\[
S_{kV} \geq 100 \text{ MVA} \cdot \frac{29.3}{20} = 146 \text{ MVA} .
\]
17 FORMULÁŘ
17.1 DOTAZNÍK PRO VLASTNÍ VÝROBNU

<table>
<thead>
<tr>
<th>VÝROBCE ELEKTŘINY (dále jen výrobce)</th>
<th>Licence na výrobu elektriny č.</th>
<th>registrová OTE č.</th>
<th>zákazník č.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jméno, příjmení, titul / obchodní firma / název</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zapsáno v OR / ZR vedením</td>
<td>oddíl</td>
<td>vložka č.</td>
<td></td>
</tr>
<tr>
<td>Datum narození / IČ</td>
<td>DIČ CZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adresa místního pobytu / síla společnosti / místo podnikání</td>
<td>Obec</td>
<td>místní část</td>
<td>PSČ</td>
</tr>
<tr>
<td>Ulice</td>
<td>čp/čo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSOBA OPRÁVNĚNÁ PRO TECHNICKÉ ZÁLEŽITOSTI
Jméno, příjmení, titul

<table>
<thead>
<tr>
<th>telefon</th>
<th>mobil</th>
<th>fax</th>
<th>e-mail</th>
</tr>
</thead>
</table>

SPECIFIKACE VÝROBNY (PŘEDÁVÁCÍ MÍSTA)
obec | místní část | PSČ |

<table>
<thead>
<tr>
<th>Ulice</th>
<th>čp/čo</th>
<th>č. předávacího místa 2</th>
</tr>
</thead>
</table>

VYUŽÍVANÁ ENERGIE, TYP VÝROBNY
- [] teplávna
- [] bioplynová
- [] dřevoplynová
- [] biomasa
- [] kogenerační
- [] vodní
- [] naftová
- [] parni
- [] paroplynová
- [] zemní plyn
- [] spalovna
- [] jiný typ výroby (upřesněte)
<table>
<thead>
<tr>
<th>GENERATOR</th>
<th>asynchronní</th>
<th>synchronní</th>
<th>se střídačem</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFORMÁTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Počet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jmenovitý výkon (S_a) kVA</td>
<td>napětí nadrážku (U_n) kV</td>
<td>%</td>
<td>odhěv energie z LDS v případě výpadku zdroje</td>
</tr>
<tr>
<td>jmenovité napětí (U_m) kV</td>
<td>jmenovité napětí (U_m) kV</td>
<td></td>
<td>dodávka veliké energie do sítě</td>
</tr>
<tr>
<td>ztráty nadrážku (P_0) kW</td>
<td>ztráty nadrážku (P_0) kW</td>
<td></td>
<td>dodávka přebytečků do sítě</td>
</tr>
<tr>
<td>TECHNICKÉ ÚDAJE JEDNOHO ZAŘÍZENÍ</td>
<td>výrobce</td>
<td>typ zařízení</td>
<td>počet stejných zařízení</td>
</tr>
<tr>
<td>činný výkon (P) kW</td>
<td>jmenovitý učinitel (cos \varphi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zdánlivý výkon (S_n) kVA</td>
<td>rozhodový proud (I) A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jmenovité napětí (U) kV</td>
<td>příspěvek vlastního zdroje ke zkratovému proudu (kA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jmenovitý proud (A)</td>
<td>zkratová odolnost zařízení (kA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOMPENZACE</td>
<td>ano výkon</td>
<td>kVA</td>
<td>ano</td>
</tr>
<tr>
<td>přiřazené jednotlivé zařízení</td>
<td>ano</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>řízené</td>
<td>ano</td>
<td>ano</td>
<td>ne</td>
</tr>
<tr>
<td>s předřazenou tlamivkou</td>
<td>ano</td>
<td>S</td>
<td>%</td>
</tr>
<tr>
<td>s lineárním obvodem</td>
<td>ano</td>
<td>pro</td>
<td>Hz</td>
</tr>
<tr>
<td>se sacími obvody</td>
<td>ano</td>
<td>pro</td>
<td>N=</td>
</tr>
</tbody>
</table>
POZNÁMKY A DOPLŇUJÍCÍ INFORMACE

VYSVĚTLIVKY
1) Pokud jste již odběratelem elektriny od PLDS, vyplňte číslo uvedené na stávajících fakturách za odběr elektriny
2) Pokud již byla/o přidělena/o.

PŘÍLOHY
- Jednopolevé schéma zapojení hlavních síťových a ochranných obvodů
- Další technické údaje o zařízení výrobce

ZA VÝROBCE
V dne

Jméno, příjmení, funkce

podpis (rozšířeno)

ZA PLDS
V dne

Jméno, příjmení, funkce

podpis (rozšířeno)
17.2 PROTOKOL O UVEĐENÍ VLASTNÍ VÝROBNY DO PROVOZU

PROTOKOL O UVEĐENÍ VLASTNÍ VÝROBNY DO PROVOZU

<table>
<thead>
<tr>
<th>Pro paralelní provoz se sítí PLDS</th>
<th>na</th>
<th>na</th>
<th>(vyloučen PLDS)</th>
<th>EAN:</th>
<th>.................................</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provozovatel (smluvní partner)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jméno..................................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel..................................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adresa zařízení........................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Záložní zařízení........................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Výsledek zkoušek a ověření skutečného stavu výroby v pořadku | ANO | NE |

1. Všeobecně
 1.1 Prohlídka zařízení (stavu) | | |
 1.2 Vybudování zařízení odpovídá podmínkám PLDS | | |
 1.3 Vybudování zařízení odpovídá schválené PD | | |
 1.4 Trvalé přístupné spínací místo, ověření funkce | | |
 1.5 Měřicí zařízení podle smluvních podmínek a technických požadavků | | |
 1.6 Předložená zpráva o výchozi revizi | | |
2. Ochrany
 2.1 Protokol o nastavení ochran | | |
 2.2 Provedení funkčních zkoušek ochran (protokol) | | |
 2.3 Kontrola stádočí (parametry podle schválené PD) | | |
 2.4 Kontrola vypnutí jistice (pouze u mn) | | |
3. Měření, podmínky pro spínání, kompenzace účinků
 3.1 OM osazeno elektroměrem pro odběr a dodávku | | |
3.2 Trvale přístupné spínací místo

3.3 Kompenzační zařízení se přepíná a odpíná s generátorem není

3.4 Kompenzační zařízení s regulací není

3.5 Funkční zkoušky měření

4. Zařízení pro regulaci a ovládání

4.1 OM osazeno přijímačem HDO

4.2 OM osazeno jednotkou RTU

4.3 Jednotka RTU a její rozhraní odpovídá schválené PD

4.4 Funkční zkouška regulace a kompenzace

4.5 Funkční zkoušky dávkového měření, ovládání a signalizace

5. Závěr z kontroly zdroje elektrické energie za účelem uvedení do trvalého provozu s PLDS

Provedena kontrola splnění podmínek PLDS pro paralelní provoz.

- Zdroj může/nemůže být provozován bez dalšího opatření
- Zdroj splňuje/nesplňuje technické podmínky pro přiznání podpory

Zařízení uvedeno do provozu za přítomnosti níže podepsaných

Podpisem protokolu stvrdzuje zřizovatel zařízení, že jsou splněny podmínky PLDS pro paralelní provoz

Místo, datum: ...

Provozovatel zařízení: ..

Obchodní partner - výrobce: ..

PLDS: ..
17.3 PŘÍLOHA PROTOKOLU O UVEDĚNÍ VÝROBNY DO PROVOZU

Příloha Protokolu o uvedení vlastní výroby do provozu (vyplňuje PLDS)

Technické informace zdroje:

Instalované zařízení

Typ výroby: Trafo stanice

Inv. č. a vlastnictví

<table>
<thead>
<tr>
<th>Transformátor:</th>
</tr>
</thead>
</table>
| Počet | ks
| Jmenovitý zd. výkon S_N | kVA | Napětí nakrátko U_k | % |
| Jmenovité napětí vn U_N | kV | Jmenovitý proud I_N | A |
| Jmenovité napětí nn U_N | kV | Jmenovité ztráty nakrátko P_mn | kW |

<table>
<thead>
<tr>
<th>Generátor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Asynchronní</td>
</tr>
<tr>
<td>Synchronní</td>
</tr>
<tr>
<td>Max. dodávaný činný výkon P (na svorkách)</td>
</tr>
</tbody>
</table>
Ostatní údaje (výrobce, typ atd.)

Štítkové údaje generátoru

Elektroměr pro vykazování zeleného bonusu (typ, rok ověření a počáteční stav)

Hodnota hlavního jističe (A) u mm

Místo, datum:

Za PLDS:

--------------------------------- ---------------------------------
technik podpis